MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Infinitesimal change of stable basis

Author(s)
Gorsky, Eugene; Negut, Andrei
Thumbnail
Download29_2017_327_ReferencePDF.pdf (223.3Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The purpose of this note is to study the Maulik–Okounkov K-theoretic stable basis for the Hilbert scheme of points on the plane, which depends on a “slope” m∈R. When m=ab is rational, we study the change of stable matrix from slope m−ε to m+ε for small ε>0, and conjecture that it is related to the Leclerc–Thibon conjugation in the q-Fock space for Uqglˆb. This is part of a wide framework of connections involving derived categories of quantized Hilbert schemes, modules for rational Cherednik algebras and Hecke algebras at roots of unity.
Date issued
2017-04
URI
http://hdl.handle.net/1721.1/110216
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Selecta Mathematica
Publisher
Springer International Publishing
Citation
Gorsky, Eugene, and Andrei Neguț. “Infinitesimal Change of Stable Basis.” Selecta Mathematica 23, no. 3 (April 27, 2017): 1909–1930.
Version: Author's final manuscript
ISSN
1022-1824
1420-9020

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.