MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exactly soluble local bosonic cocycle models, statistical transmutation, and simplest time-reversal symmetric topological orders in 3+1 dimensions

Author(s)
Wen, Xiao-Gang
Thumbnail
DownloadPhysRevB.95.205142.pdf (966.6Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We propose a generic construction of exactly soluble local bosonic models that realize various topological orders with gappable boundaries. In particular, we construct an exactly soluble bosonic model that realizes a (3+1)-dimensional [(3+1)D] Z_{2}-gauge theory with emergent fermionic Kramers doublet. We show that the emergence of such a fermion will cause the nucleation of certain topological excitations in space-time without pin^{+} structure. The exactly soluble model also leads to a statistical transmutation in (3+1)D. In addition, we construct exactly soluble bosonic models that realize 2 types of time-reversal symmetry-enriched Z_{2} topological orders in 2+1 dimensions, and 20 types of simplest time-reversal symmetry-enriched topological (SET) orders which have only one nontrivial pointlike and stringlike topological excitation. Many physical properties of those topological states are calculated using the exactly soluble models. We find that some time-reversal SET orders have pointlike excitations that carry Kramers doublet, a fractionalized time-reversal symmetry. We also find that some Z_{2} SET orders have stringlike excitations that carry anomalous (nononsite) Z_{2} symmetry, which can be viewed as a fractionalization of Z_{2} symmetry on strings. Our construction is based on cochains and cocycles in algebraic topology, which is very versatile. In principle, it can also realize emergent topological field theory beyond the twisted gauge theory.
Date issued
2017-05
URI
http://hdl.handle.net/1721.1/110247
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review B
Publisher
American Physical Society
Citation
Wen, Xiao-Gang. “Exactly Soluble Local Bosonic Cocycle Models, Statistical Transmutation, and Simplest Time-Reversal Symmetric Topological Orders in 3+1 Dimensions.” Physical Review B 95, no. 20 (May 30, 2017).
Version: Final published version
ISSN
2469-9950
2469-9969

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.