Show simple item record

dc.contributor.authorPaz-Soldan, C.
dc.contributor.authorCooper, C. M.
dc.contributor.authorAleynikov, P.
dc.contributor.authorPace, D. C.
dc.contributor.authorEidietis, N. W.
dc.contributor.authorBrennan, D. P.
dc.contributor.authorHollmann, E. M.
dc.contributor.authorLiu, C.
dc.contributor.authorLvovskiy, A.
dc.contributor.authorMoyer, R. A.
dc.contributor.authorShiraki, D.
dc.contributor.authorGranetz, Robert S
dc.date.accessioned2017-06-26T15:45:01Z
dc.date.available2017-06-26T15:45:01Z
dc.date.issued2017-06
dc.date.submitted2017-01
dc.identifier.issn0031-9007
dc.identifier.issn1079-7114
dc.identifier.urihttp://hdl.handle.net/1721.1/110251
dc.description.abstractNovel spatial, temporal, and energetically resolved measurements of bremsstrahlung hard-x-ray (HXR) emission from runaway electron (RE) populations in tokamaks reveal nonmonotonic RE distribution functions whose properties depend on the interplay of electric field acceleration with collisional and synchrotron damping. Measurements are consistent with theoretical predictions of momentum-space attractors that accumulate runaway electrons. RE distribution functions are measured to shift to a higher energy when the synchrotron force is reduced by decreasing the toroidal magnetic field strength. Increasing the collisional damping by increasing the electron density (at a fixed magnetic and electric field) reduces the energy of the nonmonotonic feature and reduces the HXR growth rate at all energies. Higher-energy HXR growth rates extrapolate to zero at the expected threshold electric field for RE sustainment, while low-energy REs are anomalously lost. The compilation of HXR emission from different sight lines into the plasma yields energy and pitch-angle-resolved RE distributions and demonstrates increasing pitch-angle and radial gradients with energy.en_US
dc.description.sponsorshipUnited States. Department of Energy (DE-FC02-04ER54698)en_US
dc.description.sponsorshipUnited States. Department of Energy (DE-FG02-07ER54917)en_US
dc.description.sponsorshipUnited States. Department of Energy (DE-AC05-00OR22725)en_US
dc.description.sponsorshipUnited States. Department of Energy (DE-FC02-99ER54512)en_US
dc.description.sponsorshipUnited States. Department of Energy (DE-SC0016268)en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevLett.118.255002en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleSpatiotemporal Evolution of Runaway Electron Momentum Distributions in Tokamaksen_US
dc.typeArticleen_US
dc.identifier.citationPaz-Soldan, C.; Cooper, C.M.; Aleynikov, P.; Pace, D.C.; Eidietis, N.W. et al. "Spatiotemporal Evolution of Runaway Electron Momentum Distributions in Tokamaks." Physical Review Letters 118, 255002 (June 2017): 1- 6 © 2017 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Centeren_US
dc.contributor.mitauthorGranetz, Robert S
dc.relation.journalPhysical Review Lettersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-06-23T21:45:24Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsPaz-Soldan, C.; Cooper, C.M.; Aleynikov, P.; Pace, D.C.; Eidietis, N.W.; Brennan, D.P.; Granetz, R.S.; Hollmann, E.M.; Liu, C.; Lvovskiy, A.; Moyer, R.A.; Shiraki, D.en_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record