MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Odd-Parity Superconductivity near an Inversion Breaking Quantum Critical Point in One Dimension

Author(s)
Ruhman, Yehonatan; Kozii, Vladyslav; Fu, Liang
Thumbnail
DownloadPhysRevLett.118.227001.pdf (332.8Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We study how an inversion-breaking quantum critical point affects the ground state of a one-dimensional electronic liquid with repulsive interaction and spin-orbit coupling. We find that regardless of the interaction strength, the critical fluctuations always lead to a gap in the electronic spin sector. The origin of the gap is a two-particle backscattering process, which becomes relevant due to renormalization of the Luttinger parameter near the critical point. The resulting spin-gapped state is topological and can be considered as a one-dimensional version of a spin-triplet superconductor. Interestingly, in the case of a ferromagnetic critical point, the Luttinger parameter is renormalized in the opposite manner, such that the system remains nonsuperconducting.
Date issued
2017-05
URI
http://hdl.handle.net/1721.1/110252
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review Letters
Publisher
American Physical Society
Citation
Ruhman, Jonathan, Vladyslav Kozii, and Liang Fu. “Odd-Parity Superconductivity Near an Inversion Breaking Quantum Critical Point in One Dimension.” Physical Review Letters 118, no. 22 (May 31, 2017).
Version: Final published version
ISSN
0031-9007
1079-7114

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.