dc.contributor.author | GUTH, LARRY | |
dc.date.accessioned | 2017-06-26T21:38:04Z | |
dc.date.available | 2017-06-26T21:38:04Z | |
dc.date.issued | 2015-09 | |
dc.date.submitted | 2015-07 | |
dc.identifier.issn | 0305-0041 | |
dc.identifier.issn | 1469-8064 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/110285 | |
dc.description.abstract | Given a set Γ of low-degree k-dimensional varieties in R[superscript n], we prove that for any D ⩾ 1, there is a non-zero polynomial P of degree at most D so that each component of R[superscript n]\Z(P) intersects O(D[superscript k−n]|Γ|) varieties of Γ. | en_US |
dc.language.iso | en_US | |
dc.publisher | Cambridge University Press | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1017/S0305004115000468 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Polynomial partitioning for a set of varieties | en_US |
dc.type | Article | en_US |
dc.identifier.citation | GUTH, LARRY. “Polynomial Partitioning for a Set of Varieties.” Mathematical Proceedings of the Cambridge Philosophical Society 159, no. 03 (September 30, 2015): 459–469. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.relation.journal | Mathematical Proceedings of the Cambridge Philosophical Society | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.orderedauthors | GUTH, LARRY | en_US |
dspace.embargo.terms | N | en_US |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |