Show simple item record

dc.contributor.authorDemanet, Laurent
dc.contributor.authorZhang, Xiangxiong
dc.date.accessioned2017-06-27T17:10:40Z
dc.date.available2017-06-27T17:10:40Z
dc.date.issued2015-05
dc.identifier.issn0025-5718
dc.identifier.issn1088-6842
dc.identifier.urihttp://hdl.handle.net/1721.1/110312
dc.description.abstractWe provide a simple analysis of the Douglas-Rachford splitting algorithm in the context of ℓ[superscript 1] minimization with linear constraints, and quantify the asymptotic linear convergence rate in terms of principal angles between relevant vector spaces. In the compressed sensing setting, we show how to bound this rate in terms of the restricted isometry constant. More general iterative schemes obtained by ℓ[superscript 2]-regularization and over-relaxation including the dual split Bregman method are also treated, which answers the question of how to choose the relaxation and soft-thresholding parameters to accelerate the asymptotic convergence rate. We make no attempt at characterizing the transient regime preceding the onset of linear convergence.en_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.description.sponsorshipAlfred P. Sloan Foundationen_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Researchen_US
dc.description.sponsorshipUnited States. Office of Naval Researchen_US
dc.language.isoen_US
dc.relation.isversionofhttp://dx.doi.org/10.1090/mcom/2965en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Mathematical Societyen_US
dc.titleEventual linear convergence of the Douglas-Rachford iteration for basis pursuiten_US
dc.typeArticleen_US
dc.identifier.citationDemanet, Laurent, and Xiangxiong Zhang. “Eventual Linear Convergence of the Douglas-Rachford Iteration for Basis Pursuit.” Math. Comp. 85, no. 297 (May 15, 2015): 209–238. © 2015 American Mathematical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorDemanet, Laurent
dc.contributor.mitauthorZhang, Xiangxiong
dc.relation.journalMathematics of Computationen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsDemanet, Laurent; Zhang, Xiangxiongen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7052-5097
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record