dc.contributor.author | Saunderson, James F | |
dc.contributor.author | Parrilo, Pablo A | |
dc.date.accessioned | 2017-06-27T19:16:08Z | |
dc.date.available | 2017-06-27T19:16:08Z | |
dc.date.issued | 2014-08 | |
dc.identifier.issn | 0025-5610 | |
dc.identifier.issn | 1436-4646 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/110332 | |
dc.description.abstract | We give explicit polynomial-sized (in n and k) semidefinite representations of the hyperbolicity cones associated with the elementary symmetric polynomials of degree k in n variables. These convex cones form a family of non-polyhedral outer approximations of the non-negative orthant that preserve low-dimensional faces while successively discarding high-dimensional faces. More generally we construct explicit semidefinite representations (polynomial-sized in k,m, and n) of the hyperbolicity cones associated with kth directional derivatives of polynomials of the form p(x)=det(∑[superscript n][subscript i=1]A[subscript i]x[subscript i]) where the A[subscript i] are m×m symmetric matrices. These convex cones form an analogous family of outer approximations to any spectrahedral cone. Our representations allow us to use semidefinite programming to solve the linear cone programs associated with these convex cones as well as their (less well understood) dual cones. | en_US |
dc.description.sponsorship | United States. Air Force. Office of Scientific Research (Grant FA9550-11-1-0305) | en_US |
dc.description.sponsorship | United States. Air Force. Office of Scientific Research (Grant FA9550-12-1-0287) | en_US |
dc.publisher | Springer Berlin Heidelberg | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/s10107-014-0804-y | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | Springer Berlin Heidelberg | en_US |
dc.title | Polynomial-sized semidefinite representations of derivative relaxations of spectrahedral cones | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Saunderson, James, and Pablo A. Parrilo. “Polynomial-Sized Semidefinite Representations of Derivative Relaxations of Spectrahedral Cones.” Mathematical Programming 153.2 (2015): 309–331. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.mitauthor | Saunderson, James F | |
dc.contributor.mitauthor | Parrilo, Pablo A | |
dc.relation.journal | Mathematical Programming | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2016-05-23T12:11:13Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society | |
dspace.orderedauthors | Saunderson, James; Parrilo, Pablo A. | en_US |
dspace.embargo.terms | N | en |
dc.identifier.orcid | https://orcid.org/0000-0003-1132-8477 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |