Show simple item record

dc.contributor.authorSaunderson, James F
dc.contributor.authorParrilo, Pablo A
dc.date.accessioned2017-06-27T19:16:08Z
dc.date.available2017-06-27T19:16:08Z
dc.date.issued2014-08
dc.identifier.issn0025-5610
dc.identifier.issn1436-4646
dc.identifier.urihttp://hdl.handle.net/1721.1/110332
dc.description.abstractWe give explicit polynomial-sized (in n and k) semidefinite representations of the hyperbolicity cones associated with the elementary symmetric polynomials of degree k in n variables. These convex cones form a family of non-polyhedral outer approximations of the non-negative orthant that preserve low-dimensional faces while successively discarding high-dimensional faces. More generally we construct explicit semidefinite representations (polynomial-sized in k,m, and n) of the hyperbolicity cones associated with kth directional derivatives of polynomials of the form p(x)=det(∑[superscript n][subscript i=1]A[subscript i]x[subscript i]) where the A[subscript i] are m×m symmetric matrices. These convex cones form an analogous family of outer approximations to any spectrahedral cone. Our representations allow us to use semidefinite programming to solve the linear cone programs associated with these convex cones as well as their (less well understood) dual cones.en_US
dc.description.sponsorshipUnited States. Air Force. Office of Scientific Research (Grant FA9550-11-1-0305)en_US
dc.description.sponsorshipUnited States. Air Force. Office of Scientific Research (Grant FA9550-12-1-0287)en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10107-014-0804-yen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titlePolynomial-sized semidefinite representations of derivative relaxations of spectrahedral conesen_US
dc.typeArticleen_US
dc.identifier.citationSaunderson, James, and Pablo A. Parrilo. “Polynomial-Sized Semidefinite Representations of Derivative Relaxations of Spectrahedral Cones.” Mathematical Programming 153.2 (2015): 309–331.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorSaunderson, James F
dc.contributor.mitauthorParrilo, Pablo A
dc.relation.journalMathematical Programmingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-05-23T12:11:13Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag Berlin Heidelberg and Mathematical Optimization Society
dspace.orderedauthorsSaunderson, James; Parrilo, Pablo A.en_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0003-1132-8477
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record