Parallel Autonomy in Automated Vehicles: Safe Motion Generation with Minimal Intervention
Author(s)
Schwarting, Wilko; Alonso Mora, Javier; Paull, Liam; Karaman, Sertac; Rus, Daniela L
DownloadMain article (1.125Mb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Current state-of-the-art vehicle safety systems,
such as assistive braking or automatic lane following, are
still only able to help in relatively simple driving situations.
We introduce a Parallel Autonomy shared-control framework
that produces safe trajectories based on human inputs even in
much more complex driving scenarios, such as those commonly
encountered in an urban setting. We minimize the deviation
from the human inputs while ensuring safety via a set of
collision avoidance constraints. We develop a receding horizon
planner formulated as a Non-linear Model Predictive Control
(NMPC) including analytic descriptions of road boundaries,
and the configurations and future uncertainties of other traffic
participants, and directly supplying them to the optimizer
without linearization. The NMPC operates over
both steering and acceleration simultaneously. Furthermore, the proposed receding horizon planner also applies to fully autonomous vehicles. We validate the proposed approach through simulations
in a wide variety of complex driving scenarios such as left-
turns across traffic, passing on busy streets, and under dynamic
constraints in sharp turns on a race track.
Date issued
2017-09Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Laboratory for Information and Decision SystemsJournal
2017 IEEE International Conference Robotics and Automation (ICRA)
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Schwarting, Wilko; Alonso-Mora, Javier; Paull, Liam; Karaman, Sertac and Rus, Daniela. "Parallel Autonomy in Automated Vehicles: Safe Motion Generation with Minimal Intervention." 2017 IEEE International Conference Robotics and Automation (ICRA), May-June 2017, Singapore, Institute of Electrical and Electronics Engineers (IEEE), September 2017.
Version: Author's final manuscript
ISBN
978-1-5090-4633-1
ISSN
978-1-5090-4632-4