Show simple item record

dc.contributor.authorTang, Dalin
dc.contributor.authorYang, Chun
dc.contributor.authorZheng, Jie
dc.contributor.authorCanton, Gador
dc.contributor.authorBach, Richard
dc.contributor.authorHuang, Xueying
dc.contributor.authorHatsukami, Thomas S.
dc.contributor.authorZhu, Jian
dc.contributor.authorMa, Genshan
dc.contributor.authorMaehara, Akiko
dc.contributor.authorMintz, Gary S.
dc.contributor.authorYuan, Chun
dc.contributor.authorKamm, Roger Dale
dc.date.accessioned2017-06-29T18:01:24Z
dc.date.available2017-06-29T18:01:24Z
dc.date.issued2014-03
dc.identifier.issn0021-9290
dc.identifier.urihttp://hdl.handle.net/1721.1/110375
dc.description.abstractMedical imaging and image-based modeling have made considerable progress in recent years in identifying atherosclerotic plaque morphological and mechanical risk factors which may be used in developing improved patient screening strategies. However, a clear understanding is needed about what we have achieved and what is really needed to translate research to actual clinical practices and bring benefits to public health. Lack of in vivo data and clinical events to serve as gold standard to validate model predictions is a severe limitation. While this perspective paper provides a review of the key steps and findings of our group in image-based models for human carotid and coronary plaques and a limited review of related work by other groups, we also focus on grand challenges and uncertainties facing the researchers in the field to develop more accurate and predictive patient screening tools.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-0540684)en_US
dc.description.sponsorshipNational Institute for Biomedical Imaging and Bioengineering (U.S.) (2R01EB004759)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R01 HL073401)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jbiomech.2014.01.012en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleImage-based modeling for better understanding and assessment of atherosclerotic plaque progression and vulnerability: Data, modeling, validation, uncertainty and predictionsen_US
dc.typeArticleen_US
dc.identifier.citationTang, Dalin, Roger D. Kamm, Chun Yang, Jie Zheng, Gador Canton, Richard Bach, Xueying Huang, et al. “Image-Based Modeling for Better Understanding and Assessment of Atherosclerotic Plaque Progression and Vulnerability: Data, Modeling, Validation, Uncertainty and Predictions.” Journal of Biomechanics 47, no. 4 (March 2014): 834–846.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorKamm, Roger Dale
dc.relation.journalJournal of Biomechanicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsTang, Dalin; Kamm, Roger D.; Yang, Chun; Zheng, Jie; Canton, Gador; Bach, Richard; Huang, Xueying; Hatsukami, Thomas S.; Zhu, Jian; Ma, Genshan; Maehara, Akiko; Mintz, Gary S.; Yuan, Chunen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7232-304X
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record