Show simple item record

dc.contributor.authorColding, Tobias
dc.contributor.authorMinicozzi, William
dc.contributor.authorPedersen, Erik J
dc.date.accessioned2017-06-30T23:22:02Z
dc.date.available2017-06-30T23:22:02Z
dc.date.issued2015-01
dc.date.submitted2014-06
dc.identifier.issn0273-0979
dc.identifier.issn1088-9485
dc.identifier.urihttp://hdl.handle.net/1721.1/110410
dc.description.abstractMean curvature flow is the negative gradient flow of volume, so any hypersurface flows through hypersurfaces in the direction of steepest descent for volume and eventually becomes extinct in finite time. Before it becomes extinct, topological changes can occur as it goes through singularities. If the hypersurface is in general or generic position, then we explain what singularities can occur under the flow, what the flow looks like near these singularities, and what this implies for the structure of the singular set. At the end, we will briefly discuss how one may be able to use the flow in low-dimensional topology.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS 11040934)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS 0906233)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Focused Research Group (Grant DMS 0854774)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Focused Research Group (Grant DMS 0853501)en_US
dc.language.isoen_US
dc.publisherAmerican Mathematical Society (AMS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1090/S0273-0979-2015-01468-0en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Mathematical Societyen_US
dc.titleMean curvature flowen_US
dc.typeArticleen_US
dc.identifier.citationColding, Tobias Holck, William P. Minicozzi, and Erik Kjær Pedersen. “Mean Curvature Flow.” Bulletin of the American Mathematical Society 52.2 (2015): 297–333. © 2015 American Mathematical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorColding, Tobias
dc.contributor.mitauthorMinicozzi, William
dc.contributor.mitauthorPedersen, Erik J
dc.relation.journalBulletin of the American Mathematical Societyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsColding, Tobias Holck; Minicozzi, William P.; Pedersen, Erik Kjæren_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6208-384X
dc.identifier.orcidhttps://orcid.org/0000-0003-4211-6354
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record