| dc.contributor.author | Herzfeld, Judith | |
| dc.contributor.author | Barnes, Alexander | |
| dc.contributor.author | Markhasin, Evgeny | |
| dc.contributor.author | Daviso, Eugenio | |
| dc.contributor.author | Michaelis, Vladimir K. | |
| dc.contributor.author | Nanni, Emilio Alessandro | |
| dc.contributor.author | Jawla, Sudheer K. | |
| dc.contributor.author | Mena, Elijah L. | |
| dc.contributor.author | Thakkar, Ajay V | |
| dc.contributor.author | Temkin, Richard J | |
| dc.contributor.author | Griffin, Robert Guy | |
| dc.contributor.author | DeRocher, Ronald | |
| dc.contributor.author | Woskov, Paul P. | |
| dc.date.accessioned | 2017-07-05T17:27:03Z | |
| dc.date.available | 2017-07-05T17:27:03Z | |
| dc.date.issued | 2012-08 | |
| dc.date.submitted | 2012-07 | |
| dc.identifier.issn | 1090-7807 | |
| dc.identifier.issn | 1096-0856 | |
| dc.identifier.uri | http://hdl.handle.net/1721.1/110466 | |
| dc.description.abstract | We describe the design and implementation of the instrumentation required to perform DNP-NMR at higher field strengths than previously demonstrated, and report the first magic-angle spinning (MAS) DNP-NMR experiments performed at ¹H/e⁻ frequencies of 700 MHz/460 GHz. The extension of DNP-NMR to 16.4 T has required the development of probe technology, cryogenics, gyrotrons, and microwave transmission lines. The probe contains a 460 GHz microwave channel, with corrugated waveguide, tapers, and miter-bends that couple microwave power to the sample. Experimental efficiency is increased by a cryogenic exchange system for 3.2 mm rotors within the 89 mm bore. Sample temperatures ⩽85 K, resulting in improved DNP enhancements, are achieved by a novel heat exchanger design, stainless steel and brass vacuum jacketed transfer lines, and a bronze probe dewar. In addition, the heat exchanger is preceded with a nitrogen drying and generation system in series with a pre-cooling refrigerator. This reduces liquid nitrogen usage from >700 l per day to <200 l per day and allows for continuous (>7 days) cryogenic spinning without detrimental frost or ice formation. Initial enhancements, ε = −40, and a strong microwave power dependence suggests the possibility for considerable improvement. Finally, two-dimensional spectra of a model system demonstrate that the higher field provides excellent resolution, even in a glassy, cryoprotecting matrix. | en_US |
| dc.description.sponsorship | National Institutes of Health (U.S.) (EB002804) | en_US |
| dc.description.sponsorship | National Institutes of Health (U.S.) (EB003151) | en_US |
| dc.description.sponsorship | National Institutes of Health (U.S.) (EB002026) | en_US |
| dc.description.sponsorship | National Institutes of Health (U.S.) (EB001960) | en_US |
| dc.description.sponsorship | National Institutes of Health (U.S.) (EB001035) | en_US |
| dc.description.sponsorship | National Institutes of Health (U.S.) (EB001965) | en_US |
| dc.description.sponsorship | National Institutes of Health (U.S.) (EB004866) | en_US |
| dc.language.iso | en_US | |
| dc.publisher | Elsevier | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.1016/j.jmr.2012.08.002 | en_US |
| dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs License | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
| dc.source | PMC | en_US |
| dc.title | Dynamic nuclear polarization at 700MHz/460GHz | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Barnes, Alexander B.; Markhasin, Evgeny; Daviso, Eugenio; Michaelis, Vladimir K.; Nanni, Emilio A.; Jawla, Sudheer K. and Mena, Elijah L. et al. “Dynamic Nuclear Polarization at 700MHz/460GHz.” Journal of Magnetic Resonance 224 (November 2012): 1–7 © 2012 Elsevier Inc | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Plasma Science and Fusion Center | en_US |
| dc.contributor.department | Francis Bitter Magnet Laboratory (Massachusetts Institute of Technology) | en_US |
| dc.contributor.mitauthor | Barnes, Alexander | |
| dc.contributor.mitauthor | Markhasin, Evgeny | |
| dc.contributor.mitauthor | Daviso, Eugenio | |
| dc.contributor.mitauthor | Michaelis, Vladimir K. | |
| dc.contributor.mitauthor | Nanni, Emilio Alessandro | |
| dc.contributor.mitauthor | Jawla, Sudheer K. | |
| dc.contributor.mitauthor | Mena, Elijah L. | |
| dc.contributor.mitauthor | DeRocher, Ronald C | |
| dc.contributor.mitauthor | Thakkar, Ajay V | |
| dc.contributor.mitauthor | Woskov, Paul P | |
| dc.contributor.mitauthor | Temkin, Richard J | |
| dc.contributor.mitauthor | Griffin, Robert Guy | |
| dc.relation.journal | Journal of Magnetic Resonance | en_US |
| dc.eprint.version | Author's final manuscript | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dspace.orderedauthors | Barnes, Alexander B.; Markhasin, Evgeny; Daviso, Eugenio; Michaelis, Vladimir K.; Nanni, Emilio A.; Jawla, Sudheer K.; Mena, Elijah L.; DeRocher, Ronald; Thakkar, Ajay; Woskov, Paul P.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G. | en_US |
| dspace.embargo.terms | N | en_US |
| dc.identifier.orcid | https://orcid.org/0000-0002-6708-7660 | |
| dc.identifier.orcid | https://orcid.org/0000-0002-1148-9345 | |
| dc.identifier.orcid | https://orcid.org/0000-0001-9813-0177 | |
| dc.identifier.orcid | https://orcid.org/0000-0003-1589-832X | |
| mit.license | PUBLISHER_CC | en_US |
| mit.metadata.status | Complete | |