Show simple item record

dc.contributor.authorHerzfeld, Judith
dc.contributor.authorBarnes, Alexander
dc.contributor.authorMarkhasin, Evgeny
dc.contributor.authorDaviso, Eugenio
dc.contributor.authorMichaelis, Vladimir K.
dc.contributor.authorNanni, Emilio Alessandro
dc.contributor.authorJawla, Sudheer K.
dc.contributor.authorMena, Elijah L.
dc.contributor.authorThakkar, Ajay V
dc.contributor.authorTemkin, Richard J
dc.contributor.authorGriffin, Robert Guy
dc.contributor.authorDeRocher, Ronald
dc.contributor.authorWoskov, Paul P.
dc.date.accessioned2017-07-05T17:27:03Z
dc.date.available2017-07-05T17:27:03Z
dc.date.issued2012-08
dc.date.submitted2012-07
dc.identifier.issn1090-7807
dc.identifier.issn1096-0856
dc.identifier.urihttp://hdl.handle.net/1721.1/110466
dc.description.abstractWe describe the design and implementation of the instrumentation required to perform DNP-NMR at higher field strengths than previously demonstrated, and report the first magic-angle spinning (MAS) DNP-NMR experiments performed at ¹H/e⁻ frequencies of 700 MHz/460 GHz. The extension of DNP-NMR to 16.4 T has required the development of probe technology, cryogenics, gyrotrons, and microwave transmission lines. The probe contains a 460 GHz microwave channel, with corrugated waveguide, tapers, and miter-bends that couple microwave power to the sample. Experimental efficiency is increased by a cryogenic exchange system for 3.2 mm rotors within the 89 mm bore. Sample temperatures ⩽85 K, resulting in improved DNP enhancements, are achieved by a novel heat exchanger design, stainless steel and brass vacuum jacketed transfer lines, and a bronze probe dewar. In addition, the heat exchanger is preceded with a nitrogen drying and generation system in series with a pre-cooling refrigerator. This reduces liquid nitrogen usage from >700 l per day to <200 l per day and allows for continuous (>7 days) cryogenic spinning without detrimental frost or ice formation. Initial enhancements, ε = −40, and a strong microwave power dependence suggests the possibility for considerable improvement. Finally, two-dimensional spectra of a model system demonstrate that the higher field provides excellent resolution, even in a glassy, cryoprotecting matrix.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (EB002804)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (EB003151)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (EB002026)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (EB001960)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (EB001035)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (EB001965)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (EB004866)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jmr.2012.08.002en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleDynamic nuclear polarization at 700MHz/460GHzen_US
dc.typeArticleen_US
dc.identifier.citationBarnes, Alexander B.; Markhasin, Evgeny; Daviso, Eugenio; Michaelis, Vladimir K.; Nanni, Emilio A.; Jawla, Sudheer K. and Mena, Elijah L. et al. “Dynamic Nuclear Polarization at 700MHz/460GHz.” Journal of Magnetic Resonance 224 (November 2012): 1–7 © 2012 Elsevier Incen_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Centeren_US
dc.contributor.departmentFrancis Bitter Magnet Laboratory (Massachusetts Institute of Technology)en_US
dc.contributor.mitauthorBarnes, Alexander
dc.contributor.mitauthorMarkhasin, Evgeny
dc.contributor.mitauthorDaviso, Eugenio
dc.contributor.mitauthorMichaelis, Vladimir K.
dc.contributor.mitauthorNanni, Emilio Alessandro
dc.contributor.mitauthorJawla, Sudheer K.
dc.contributor.mitauthorMena, Elijah L.
dc.contributor.mitauthorDeRocher, Ronald C
dc.contributor.mitauthorThakkar, Ajay V
dc.contributor.mitauthorWoskov, Paul P
dc.contributor.mitauthorTemkin, Richard J
dc.contributor.mitauthorGriffin, Robert Guy
dc.relation.journalJournal of Magnetic Resonanceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBarnes, Alexander B.; Markhasin, Evgeny; Daviso, Eugenio; Michaelis, Vladimir K.; Nanni, Emilio A.; Jawla, Sudheer K.; Mena, Elijah L.; DeRocher, Ronald; Thakkar, Ajay; Woskov, Paul P.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6708-7660
dc.identifier.orcidhttps://orcid.org/0000-0002-1148-9345
dc.identifier.orcidhttps://orcid.org/0000-0001-9813-0177
dc.identifier.orcidhttps://orcid.org/0000-0003-1589-832X
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record