Show simple item record

dc.contributor.authorHendon, Christopher H.
dc.contributor.authorWalsh, Aron
dc.contributor.authorPark, Sarah Sunah
dc.contributor.authorHontz, Eric Richard
dc.contributor.authorSun, Lei
dc.contributor.authorVan Voorhis, Troy
dc.contributor.authorDinca, Mircea
dc.date.accessioned2017-07-06T15:22:49Z
dc.date.available2017-07-06T15:22:49Z
dc.date.issued2015-01
dc.date.submitted2014-12
dc.identifier.issn0002-7863
dc.identifier.issn1520-5126
dc.identifier.urihttp://hdl.handle.net/1721.1/110489
dc.description.abstractIsostructural metal–organic frameworks (MOFs) M[subscript 2](TTFTB) (M = Mn, Co, Zn, and Cd; H[subscript 4]TTFTB = tetrathiafulvalene tetrabenzoate) exhibit a striking correlation between their single-crystal conductivities and the shortest S···S interaction defined by neighboring TTF cores, which inversely correlates with the ionic radius of the metal ions. The larger cations cause a pinching of the S···S contact, which is responsible for better orbital overlap between pz orbitals on neighboring S and C atoms. Density functional theory calculations show that these orbitals are critically involved in the valence band of these materials, such that modulation of the S···S distance has an important effect on band dispersion and, implicitly, on the conductivity. The Cd analogue, with the largest cation and shortest S···S contact, shows the largest electrical conductivity, σ = 2.86 (±0.53) × 10[subscript –4] S/cm, which is also among the highest in microporous MOFs. These results describe the first demonstration of tunable intrinsic electrical conductivity in this class of materials and serve as a blueprint for controlling charge transport in MOFs with π-stacked motifs.en_US
dc.description.sponsorshipUnited States. Department of Energy. Office of Basic Energy Sciences (Award DE-SC0006937)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship Program (Award 1122374)en_US
dc.description.sponsorshipDavid & Lucile Packard Foundation (Fellowship)en_US
dc.language.isoen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/ja512437uen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceACSen_US
dc.titleCation-Dependent Intrinsic Electrical Conductivity in Isostructural Tetrathiafulvalene-Based Microporous Metal–Organic Frameworksen_US
dc.typeArticleen_US
dc.identifier.citationPark, Sarah S. et al. “Cation-Dependent Intrinsic Electrical Conductivity in Isostructural Tetrathiafulvalene-Based Microporous Metal–Organic Frameworks.” Journal of the American Chemical Society 137.5 (2015): 1774–1777. © 2015 American Chemical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.mitauthorPark, Sarah Sunah
dc.contributor.mitauthorHontz, Eric Richard
dc.contributor.mitauthorSun, Lei
dc.contributor.mitauthorVan Voorhis, Troy
dc.contributor.mitauthorDinca, Mircea
dc.relation.journalJournal of the American Chemical Societyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsPark, Sarah S.; Hontz, Eric R.; Sun, Lei; Hendon, Christopher H.; Walsh, Aron; Van Voorhis, Troy; Dincă, Mirceaen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7837-8412
dc.identifier.orcidhttps://orcid.org/0000-0002-6547-3402
dc.identifier.orcidhttps://orcid.org/0000-0001-7111-0176
dc.identifier.orcidhttps://orcid.org/0000-0002-1262-1264
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record