Show simple item record

dc.contributor.authorKoolen, Twan
dc.contributor.authorMarion, Pat
dc.contributor.authorKuindersma, Scott
dc.contributor.authorDeits, Robin Lloyd Henderson
dc.contributor.authorFallon, Maurice
dc.contributor.authorValenzuela, Andres Klee
dc.contributor.authorDai, Hongkai
dc.contributor.authorPermenter, Frank Noble
dc.contributor.authorTedrake, Russell L
dc.date.accessioned2017-07-07T15:29:29Z
dc.date.available2017-07-07T15:29:29Z
dc.date.issued2015-07
dc.date.submitted2014-10
dc.identifier.issn0929-5593
dc.identifier.issn1573-7527
dc.identifier.urihttp://hdl.handle.net/1721.1/110533
dc.description.abstractThis paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments. To make challenging locomotion tasks tractable, we describe several novel applications of convex, mixed-integer, and sparse nonlinear optimization to problems ranging from footstep placement to whole-body planning and control. We also present a state estimator formulation that, when combined with our walking controller, permits highly precise execution of extended walking plans over non-flat terrain. We describe our complete system integration and experiments carried out on Atlas, a full-size hydraulic humanoid robot built by Boston Dynamics, Inc.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (FA8750-12-1-0321)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (N00014-12-1-0071)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (N00014-10-1-0951)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (IIS-0746194)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (IIS-1161909)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10514-015-9479-3en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleOptimization-based locomotion planning, estimation, and control design for the atlas humanoid roboten_US
dc.typeArticleen_US
dc.identifier.citationKuindersma, Scott; Deits, Robin; Fallon, Maurice; Valenzuela, Andrés; Dai, Hongkai; Permenter, Frank; Koolen, Twan; Marion, Pat and Tedrake, Russ. "Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot." Autonomous Robots 40, 3 (March 2016): 429-455 © 2015 Springer Science+Business Media New Yorken_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.mitauthorKuindersma, Scott
dc.contributor.mitauthorDeits, Robin Lloyd Henderson
dc.contributor.mitauthorFallon, Maurice
dc.contributor.mitauthorValenzuela, Andres Klee
dc.contributor.mitauthorDai, Hongkai
dc.contributor.mitauthorPermenter, Frank Noble
dc.contributor.mitauthorTedrake, Russell L
dc.relation.journalAutonomous Robotsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsKuindersma, Scott; Deits, Robin; Fallon, Maurice; Valenzuela, Andrés; Dai, Hongkai; Permenter, Frank; Koolen, Twan; Marion, Pat; Tedrake, Russen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9755-3856
dc.identifier.orcidhttps://orcid.org/0000-0001-6798-1921
dc.identifier.orcidhttps://orcid.org/0000-0001-9363-3701
dc.identifier.orcidhttps://orcid.org/0000-0002-8935-7449
dc.identifier.orcidhttps://orcid.org/0000-0002-8712-7092
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record