dc.contributor.author | Morton, Stephen Winford | |
dc.contributor.author | Zhao, Xiaoyong | |
dc.contributor.author | Quadir, Mohiuddin Abdul | |
dc.contributor.author | Hammond, Paula T | |
dc.date.accessioned | 2017-07-07T17:43:14Z | |
dc.date.available | 2017-07-07T17:43:14Z | |
dc.date.issued | 2014-01 | |
dc.date.submitted | 2013-11 | |
dc.identifier.issn | 0142-9612 | |
dc.identifier.issn | 1878-5905 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/110543 | |
dc.description.abstract | Translation of micelles from the laboratory to the clinic is limited by a poor understanding of their in vivo fate following administration. In this paper, we establish a robust approach to real-time monitoring of the in vivo stability of micelles using Förster Resonance Energy Transfer (FRET). This characterization method allows for exquisite insight into the fate of micellar constituents, affording the capabilities to rapidly and efficiently evaluate a library of synthetically derived micellar systems as new therapeutic platforms in vivo. FRET-enabled biological characterization further holds potential to tailor material systems being uniquely investigated across the delivery community towards the next generation of stable therapeutics for disease management. | en_US |
dc.description.sponsorship | National Cancer Institute (U.S.) (P30-CA14051) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (5 U54 CA151884-02) | en_US |
dc.language.iso | en_US | |
dc.publisher | Elsevier | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/j.biomaterials.2014.01.027 | en_US |
dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs License | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
dc.source | PMC | en_US |
dc.title | FRET-enabled biological characterization of polymeric micelles | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Morton, Stephen W.; Zhao, Xiaoyong; Quadir, Mohiuddin A. and Hammond, Paula T. “FRET-Enabled Biological Characterization of Polymeric Micelles.” Biomaterials 35, 11 (April 2014): 3489–3496 © 2014 Elsevier Ltd | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Chemical Engineering | en_US |
dc.contributor.department | Koch Institute for Integrative Cancer Research at MIT | en_US |
dc.contributor.mitauthor | Morton, Stephen Winford | |
dc.contributor.mitauthor | Zhao, Xiaoyong | |
dc.contributor.mitauthor | Quadir, Mohiuddin Abdul | |
dc.contributor.mitauthor | Hammond, Paula T | |
dc.relation.journal | Biomaterials | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Morton, Stephen W.; Zhao, Xiaoyong; Quadir, Mohiuddin A.; Hammond, Paula T. | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-5568-6455 | |
mit.license | PUBLISHER_CC | en_US |