Show simple item record

dc.contributor.authorBorodin, Alexei
dc.contributor.authorCorwin, Ivan
dc.date.accessioned2017-07-07T18:20:56Z
dc.date.available2017-07-07T18:20:56Z
dc.date.issued2013-10
dc.date.submitted2013-05
dc.identifier.issn1073-7928
dc.identifier.issn1687-0247
dc.identifier.urihttp://hdl.handle.net/1721.1/110552
dc.description.abstractWe introduce two new exactly solvable (stochastic) interacting particle systems which are discrete time versions of q-TASEP. We call these geometric and Bernoulli discrete time q-TASEP. We obtain concise formulas for expectations of a large enough class of observables of the systems to completely characterize their fixed time distributions when started from step initial condition. We then extract Fredholm determinant formulas for the marginal distribution of the location of any given particle. Underlying this work is the fact that these expectations solve closed systems of difference equations which can be rewritten as free evolution equations with k−1 two-body boundary conditions—discrete q-deformed versions of the quantum delta Bose gas. These can be solved via a nested contour integral ansatz. The same solutions also arise in the study of Macdonald processes, and we show how the systems of equations our expectations solve are equivalent to certain commutation relations involving the Macdonald first difference operator.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1056390)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1208998)en_US
dc.description.sponsorshipMicrosoft Research (Schramm Memorial Fellowship)en_US
dc.description.sponsorshipClay Mathematics Institute (Research Fellowship)en_US
dc.language.isoen_US
dc.publisherOxford University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/imrn/rnt206en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleDiscrete Time q-TASEPsen_US
dc.typeArticleen_US
dc.identifier.citationBorodin, A., and I. Corwin. “Discrete Time Q-TASEPs.” International Mathematics Research Notices (2013): n. pag.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorBorodin, Alexei
dc.contributor.mitauthorCorwin, Ivan
dc.relation.journalInternational Mathematics Research Noticesen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsBorodin, A.; Corwin, I.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2913-5238
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record