MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Social interaction for efficient agent learning from human reward

Author(s)
Li, Guangliang; Whiteson, Shimon; Hung, Hayley; Knox, Brad
Thumbnail
Download10458_2017_Article_9374.pdf (1.252Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract - Learning from rewards generated by a human trainer observing an agent in action has been proven to be a powerful method for teaching autonomous agents to perform challenging tasks, especially for those non-technical users. Since the efficacy of this approach depends critically on the reward the trainer provides, we consider how the interaction between the trainer and the agent should be designed so as to increase the efficiency of the training process. This article investigates the influence of the agent’s socio-competitive feedback on the human trainer’s training behavior and the agent’s learning. The results of our user study with 85 participants suggest that the agent’s passive socio-competitive feedback—showing performance and score of agents trained by trainers in a leaderboard—substantially increases the engagement of the participants in the game task and improves the agents’ performance, even though the participants do not directly play the game but instead train the agent to do so. Moreover, making this feedback active—sending the trainer her agent’s performance relative to others—further induces more participants to train agents longer and improves the agent’s learning. Our further analysis shows that agents trained by trainers affected by both the passive and active social feedback could obtain a higher performance under a score mechanism that could be optimized from the trainer’s perspective and the agent’s additional active social feedback can keep participants to further train agents to learn policies that can obtain a higher performance under such a score mechanism.
Date issued
2017-07
URI
http://hdl.handle.net/1721.1/110599
Department
Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Journal
Autonomous Agents and Multi-Agent Systems
Publisher
Springer US
Citation
Li, Guangliang, Shimon Whiteson, W. Bradley Knox, and Hayley Hung. “Social Interaction for Efficient Agent Learning from Human Reward.” Autonomous Agents and Multi-Agent Systems (July 3, 2017).
Version: Final published version
ISSN
1387-2532
1573-7454

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.