Study of decuplet baryon resonances from lattice QCD
Author(s)
Alexandrou, C.; Petschlies, M.; Syritsyn, S. N.; Pochinsky, Andrew; Negele, John W.
DownloadPhysRevD.93.114515.pdf (890.3Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
A lattice QCD study of the strong decay width and coupling constant of decuplet baryons to an octet baryon-pion state is presented. The transfer matrix method is used to obtain the overlap of lattice states with decuplet baryon quantum numbers on the one hand and octet baryon-pion quantum numbers on the other as an approximation of the matrix element of the corresponding transition. By making use of leading-order effective field theory, the coupling constants as well as the widths for the various decay channels are determined. The transitions studied are Δ→πN, Σ[superscript *]→Λπ, Σ^[superscript *]→Σπ and Ξ[superscript *]→Ξπ. We obtain results for two ensembles of N[subscript f]=2+1 dynamical fermion configurations: one using domain wall valence quarks on a staggered sea at a pion mass of 350 MeV and a box size of 3.4 fm and a second one using domain wall sea and valence quarks at pion mass 180 MeV and box size 4.5 fm.
Date issued
2016-06Department
Massachusetts Institute of Technology. Center for Theoretical Physics; Massachusetts Institute of Technology. Department of Physics; Massachusetts Institute of Technology. Laboratory for Nuclear ScienceJournal
Physical Review D
Publisher
American Physical Society
Citation
Alexandrou, C. et al. “Study of Decuplet Baryon Resonances from Lattice QCD.” Physical Review D 93.11 (2016): n. pag. © 2016 American Physical Society
Version: Final published version
ISSN
2470-0010
2470-0029