Show simple item record

dc.contributor.authorZhang, Teng
dc.contributor.authorYuk, Hyunwoo
dc.contributor.authorLin, Shaoting
dc.contributor.authorParada Hernandez, German Alberto
dc.contributor.authorZhao, Xuanhe
dc.date.accessioned2017-07-11T13:41:24Z
dc.date.available2018-03-04T06:00:05Z
dc.date.issued2017-05
dc.date.submitted2017-03
dc.identifier.issn0567-7718
dc.identifier.issn1614-3116
dc.identifier.urihttp://hdl.handle.net/1721.1/110619
dc.description.abstractAs polymer networks infiltrated with water, hydrogels are major constituents of animal and plant bodies and have diverse engineering applications. While natural hydrogels can robustly adhere to other biological materials, such as bonding of tendons and cartilage on bones and adhesive plaques of mussels, it is challenging to achieve such tough adhesions between synthetic hydrogels and engineering materials. Recent experiments show that chemically anchoring long-chain polymer networks of tough synthetic hydrogels on solid surfaces create adhesions tougher than their natural counterparts, but the underlying mechanism has not been well understood. It is also challenging to tune systematically the adhesion of hydrogels on solids. Here, we provide a quantitative understanding of the mechanism for tough adhesions of hydrogels on solid materials via a combination of experiments, theory, and numerical simulations. Using a coupled cohesive-zone and Mullins-effect model validated by experiments, we reveal the interplays of intrinsic work of adhesion, interfacial strength, and energy dissipation in bulk hydrogels in order to achieve tough adhesions. We further show that hydrogel adhesion can be systematically tuned by tailoring the hydrogel geometry and silanization time of solid substrates, corresponding to the control of energy dissipation zone and intrinsic work of adhesion, respectively. The current work further provides a theoretical foundation for rational design of future biocompatible and underwater adhesives.en_US
dc.description.sponsorshipUnited States. Office of Naval Research (N00014-14-1-0528)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CMMI-1253495)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (UH3TR000505)en_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10409-017-0661-zen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceThe Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciencesen_US
dc.titleTough and tunable adhesion of hydrogels: experiments and modelsen_US
dc.typeArticleen_US
dc.identifier.citationZhang, Teng; Yuk, Hyunwoo et al. “Tough and Tunable Adhesion of Hydrogels: Experiments and Models.” Acta Mechanica Sinica 33, 3 (May 2017): 543–554 © 2017 The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelbergen_US
dc.contributor.departmentMassachusetts Institute of Technology. Soft Active Materials Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorZhang, Teng
dc.contributor.mitauthorYuk, Hyunwoo
dc.contributor.mitauthorLin, Shaoting
dc.contributor.mitauthorParada Hernandez, German Alberto
dc.contributor.mitauthorZhao, Xuanhe
dc.relation.journalActa Mechanica Sinicaen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-07-05T03:58:21Z
dc.language.rfc3066en
dc.rights.holderThe Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg
dspace.orderedauthorsZhang, Teng; Yuk, Hyunwoo; Lin, Shaoting; Parada, German A.; Zhao, Xuanheen_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0001-7015-058X
dc.identifier.orcidhttps://orcid.org/0000-0003-1710-9750
dc.identifier.orcidhttps://orcid.org/0000-0001-7922-0249
dc.identifier.orcidhttps://orcid.org/0000-0001-5387-6186
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record