MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On grids in topological graphs

Author(s)
Ackerman, Eyal; Fox, Jacob; Pach, János; Suk, Andrew
Thumbnail
DownloadFox_On grids.pdf (256.1Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
A topological graph G is a graph drawn in the plane with vertices represented by points and edges represented by continuous arcs connecting the vertices. If every edge is drawn as a straight-line segment, then G is called a geometric graph. A k-grid in a topological graph is a pair of subsets of the edge set, each of size k, such that every edge in one subset crosses every edge in the other subset. It is known that every n-vertex topological graph with no k-grid has O[subscript k](n) edges. We conjecture that the number of edges of every n-vertex topological graph with no k-grid such that all of its 2k edges have distinct endpoints is O[subscript k(n). This conjecture is shown to be true apart from an iterated logarithmic factor ⁎. A k-grid is natural if its edges have distinct endpoints, and the arcs representing each of its edge subsets are pairwise disjoint. We also conjecture that every n-vertex geometric graph with no natural k-grid has edges, but we can establish only an O[subscript k](nlog[superscript 2] n) upper bound. We verify the above conjectures in several special cases.
Date issued
2014-02
URI
http://hdl.handle.net/1721.1/110635
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Computational Geometry
Publisher
Elsevier
Citation
Ackerman, Eyal, Jacob Fox, János Pach, and Andrew Suk. “On Grids in Topological Graphs.” Computational Geometry 47, no. 7 (August 2014): 710–723.
Version: Author's final manuscript
ISSN
09257721

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.