MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantum speed limits, coherence, and asymmetry

Author(s)
Spekkens, Robert W.; Zanardi, Paolo; Marvian Mashhad, Iman
Thumbnail
DownloadPhysRevA.93.052331.pdf (310.1Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The resource theory of asymmetry is a framework for classifying and quantifying the symmetry-breaking properties of both states and operations relative to a given symmetry. In the special case where the symmetry is the set of translations generated by a fixed observable, asymmetry can be interpreted as coherence relative to the observable eigenbasis, and the resource theory of asymmetry provides a framework to study this notion of coherence. We here show that this notion of coherence naturally arises in the context of quantum speed limits. Indeed, the very concept of speed of evolution, i.e., the inverse of the minimum time it takes the system to evolve to another (partially) distinguishable state, is a measure of asymmetry relative to the time translations generated by the system Hamiltonian. Furthermore, the celebrated Mandelstam-Tamm and Margolus-Levitin speed limits can be interpreted as upper bounds on this measure of asymmetry by functions which are themselves measures of asymmetry in the special case of pure states. Using measures of asymmetry that are not restricted to pure states, such as the Wigner-Yanase skew information, we obtain extensions of the Mandelstam-Tamm bound which are significantly tighter in the case of mixed states. We also clarify some confusions in the literature about coherence and asymmetry, and show that measures of coherence are a proper subset of measures of asymmetry.
Date issued
2016-05
URI
http://hdl.handle.net/1721.1/110639
Department
Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Physical Review A
Publisher
American Physical Society
Citation
Marvian, Iman; Spekkens, Robert W. and Zanardi, Paolo. "Quantum speed limits, coherence, and asymmetry." Physical Review A 93, 052331 (May 2016): 1-12 © 2016 American Physical Society
Version: Final published version
ISSN
2469-9926
2469-9934

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.