Show simple item record

dc.contributor.authorColding, Tobias
dc.contributor.authorNaber, Aaron Charles
dc.date.accessioned2017-07-11T18:40:08Z
dc.date.available2017-07-11T18:40:08Z
dc.date.issued2013-10
dc.date.submitted2013-04
dc.identifier.issn0001-8708
dc.identifier.issn1090-2082
dc.identifier.urihttp://hdl.handle.net/1721.1/110645
dc.description.abstractWe study here limit spaces (M[subscript α], g[subscript α], p[subscript α]) [GH over →] (Y, d[subscript Y], p), where the M[subscript α] have a lower Ricci curvature bound and are volume noncollapsed. Such limits Y may be quite singular, however it is known that there is a subset of full measure R(Y) ⊆ Y, called regular points, along with coverings by the almost regular points ∩[subscript ε]∪[subscript r] R[subscript ε,r](Y) = R(Y) such that each of the Reifenberg sets R[subscript ε,r](Y) is bi-Hölder homeomorphic to a manifold. It has been an ongoing question as to the bi-Lipschitz regularity the Reifenberg sets.Our results have two parts in this paper. First we show that each of the sets R[subscript ε,r](Y) are bi-Lipschitz embeddable into Euclidean space. Conversely, we show the bi-Lipschitz nature of the embedding is sharp. In fact, we construct a limit space Y which is even uniformly Reifenberg, that is, not only is each tangent cone of Y isometric to R[superscript n] but convergence to the tangent cones is at a uniform rate in Y, such that there exists no C[superscript 1,β] embeddings of Y into Euclidean space for any β > 0. Further, despite the strong tangential regularity of Y, there exists a point y ∈ Y such that every pair of minimizing geodesics beginning at y branches to any order at y. More specifically, given any two unit speed minimizing geodesics γ[superscript 1], γ[subscript 2] beginning at y and any 0 ≤ θ ≤ π, there exists a sequence t[subscript i] → 0 such that the angle ∠ γ[subscript 1](t[subscript i])yγ[subscript 2](t[subscript i]) converges to θ.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS 0606629)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS 1104392)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Focused Research Group (Grant DMS 0854774)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship Programen_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.aim.2013.09.005en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleLower Ricci curvature, branching and the bilipschitz structure of uniform Reifenberg spacesen_US
dc.typeArticleen_US
dc.identifier.citationColding, Tobias Holck, and Aaron Naber. “Lower Ricci Curvature, Branching and the Bilipschitz Structure of Uniform Reifenberg Spaces.” Advances in Mathematics 249 (2013): 348–358.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorColding, Tobias
dc.contributor.mitauthorNaber, Aaron Charles
dc.relation.journalAdvances in Mathematicsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsColding, Tobias Holck; Naber, Aaronen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6208-384X
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record