Show simple item record

dc.contributor.authorJanda, F.
dc.contributor.authorPandharipande, R.
dc.contributor.authorZvonkine, D.
dc.contributor.authorPixton, Aaron C
dc.date.accessioned2017-07-12T13:35:46Z
dc.date.available2018-03-04T06:00:06Z
dc.date.issued2017-05
dc.date.submitted2016-03
dc.identifier.issn0073-8301
dc.identifier.issn1618-1913
dc.identifier.urihttp://hdl.handle.net/1721.1/110656
dc.description.abstractCurves of genus g which admit a map to P1 with specified ramification profile μ over 0∈P1 and ν over ∞∈P1 define a double ramification cycle DRg(μ,ν) on the moduli space of curves. The study of the restrictions of these cycles to the moduli of nonsingular curves is a classical topic. In 2003, Hain calculated the cycles for curves of compact type. We study here double ramification cycles on the moduli space of Deligne-Mumford stable curves. The cycle DRg(μ,ν) for stable curves is defined via the virtual fundamental class of the moduli of stable maps to rubber. Our main result is the proof of an explicit formula for DRg(μ,ν) in the tautological ring conjectured by Pixton in 2014. The formula expresses the double ramification cycle as a sum over stable graphs (corresponding to strata classes) with summand equal to a product over markings and edges. The result answers a question of Eliashberg from 2001 and specializes to Hain’s formula in the compact type case. When μ=ν=∅, the formula for double ramification cycles expresses the top Chern class λg of the Hodge bundle of M¯¯¯¯¯¯g as a push-forward of tautological classes supported on the divisor of non-separating nodes. Applications to Hodge integral calculations are given.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10240-017-0088-xen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleDouble ramification cycles on the moduli spaces of curvesen_US
dc.typeArticleen_US
dc.identifier.citationJanda, F., R. Pandharipande, A. Pixton, and D. Zvonkine. “Double Ramification Cycles on the Moduli Spaces of Curves.” Publications Mathématiques de l’IHÉS 125, no. 1 (May 10, 2017): 221–266.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorPixton, Aaron C
dc.relation.journalPublications mathématiques de l'IHÉSen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-07-06T04:10:22Z
dc.language.rfc3066en
dc.rights.holderIHES and Springer-Verlag Berlin Heidelberg
dspace.orderedauthorsJanda, F.; Pandharipande, R.; Pixton, A.; Zvonkine, D.en_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0003-3259-1290
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record