Show simple item record

dc.contributor.authorPhillips, Andrew J.
dc.contributor.authorMcHill, Andrew W.
dc.contributor.authorCzeisler, Charles A.
dc.contributor.authorKlerman, Elizabeth B.
dc.contributor.authorSano, Akane
dc.contributor.authorYu, Amy Z.
dc.contributor.authorTaylor, Sara Ann
dc.contributor.authorJaques, Natasha Mary
dc.contributor.authorPicard, Rosalind W.
dc.date.accessioned2017-07-12T17:19:42Z
dc.date.available2017-07-12T17:19:42Z
dc.date.issued2015-10
dc.date.submitted2015-06
dc.identifier.isbn978-1-4673-7201-5
dc.identifier.isbn978-1-4673-7202-2
dc.identifier.urihttp://hdl.handle.net/1721.1/110680
dc.description.abstractWhat can wearable sensors and usage of smart phones tell us about academic performance, self-reported sleep quality, stress and mental health condition? To answer this question, we collected extensive subjective and objective data using mobile phones, surveys, and wearable sensors worn day and night from 66 participants, for 30 days each, totaling 1,980 days of data. We analyzed daily and monthly behavioral and physiological patterns and identified factors that affect academic performance (GPA), Pittsburg Sleep Quality Index (PSQI) score, perceived stress scale (PSS), and mental health composite score (MCS) from SF-12, using these month-long data. We also examined how accurately the collected data classified the participants into groups of high/low GPA, good/poor sleep quality, high/low self-reported stress, high/low MCS using feature selection and machine learning techniques. We found associations among PSQI, PSS, MCS, and GPA and personality types. Classification accuracies using the objective data from wearable sensors and mobile phones ranged from 67-92%.en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/BSN.2015.7299420en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleRecognizing academic performance, sleep quality, stress level, and mental health using personality traits, wearable sensors and mobile phonesen_US
dc.typeArticleen_US
dc.identifier.citationSano, Akane; Phillips, Andrew J.; Yu, Amy Z. et al. “Recognizing Academic Performance, Sleep Quality, Stress Level, and Mental Health Using Personality Traits, Wearable Sensors and Mobile Phones.” 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), June 2015, Cambridge, Massachusetts, Institute of Electrical and Electronics Engineers (IEEE), October 2015en_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.contributor.mitauthorSano, Akane
dc.contributor.mitauthorYu, Amy Z.
dc.contributor.mitauthorTaylor, Sara Ann
dc.contributor.mitauthorJaques, Natasha Mary
dc.contributor.mitauthorPicard, Rosalind W.
dc.relation.journal2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsSano, Akane; Phillips, Andrew J.; Yu, Amy Z.; McHill, Andrew W.; Taylor, Sara; Jaques, Natasha; Czeisler, Charles A.; Klerman, Elizabeth B.; Picard, Rosalind W.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4484-8946
dc.identifier.orcidhttps://orcid.org/0000-0003-4133-9230
dc.identifier.orcidhttps://orcid.org/0000-0002-8413-9469
dc.identifier.orcidhttps://orcid.org/0000-0002-5661-0022
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record