MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

General β-Jacobi Corners Process and the Gaussian Free Field

Author(s)
Borodin, Alexei; Gorin, Vadim
Thumbnail
DownloadBorodin_General Jacobi.pdf (637.7Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We prove that the two-dimensional Gaussian free field describes the asymptotics of global fluctuations of a multilevel extension of the general β-Jacobi random matrix ensembles. Our approach is based on the connection of the Jacobi ensembles to a degeneration of the Macdonald processes that parallels the degeneration of the Macdonald polynomials to the Heckman-Opdam hypergeometric functions (of type A). We also discuss the β → ∞ limit.
Date issued
2015-08
URI
http://hdl.handle.net/1721.1/110685
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Communications on Pure and Applied Mathematics
Publisher
Wiley Blackwell
Citation
Borodin, Alexei, and Gorin, Vadim. “General β-Jacobi Corners Process and the Gaussian Free Field.” Communications on Pure and Applied Mathematics 68, no. 10 (October 2014): 1774–1844 © 2015 Wiley Periodicals, Inc
Version: Author's final manuscript
ISSN
0010-3640
1097-0312

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.