Show simple item record

dc.contributor.authorColey, Connor W.
dc.contributor.authorBarzilay, Regina
dc.contributor.authorJaakkola, Tommi S.
dc.contributor.authorGreen, William H.
dc.contributor.authorJensen, Klavs F.
dc.contributor.authorColey, Connor Wilson
dc.contributor.authorJaakkola, Tommi S.
dc.contributor.authorGreen, William H.
dc.contributor.authorJensen, Klavs F.
dc.date.accessioned2017-07-14T18:41:19Z
dc.date.available2017-07-14T18:41:19Z
dc.date.issued2017-04
dc.date.submitted2017-02
dc.identifier.issn2374-7943
dc.identifier.issn2374-7951
dc.identifier.urihttp://hdl.handle.net/1721.1/110706
dc.description.abstractComputer assistance in synthesis design has existed for over 40 years, yet retrosynthesis planning software has struggled to achieve widespread adoption. One critical challenge in developing high-quality pathway suggestions is that proposed reaction steps often fail when attempted in the laboratory, despite initially seeming viable. The true measure of success for any synthesis program is whether the predicted outcome matches what is observed experimentally. We report a model framework for anticipating reaction outcomes that combines the traditional use of reaction templates with the flexibility in pattern recognition afforded by neural networks. Using 15 000 experimental reaction records from granted United States patents, a model is trained to select the major (recorded) product by ranking a self-generated list of candidates where one candidate is known to be the major product. Candidate reactions are represented using a unique edit-based representation that emphasizes the fundamental transformation from reactants to products, rather than the constituent molecules’ overall structures. In a 5-fold cross-validation, the trained model assigns the major product rank 1 in 71.8% of cases, rank ≤3 in 86.7% of cases, and rank ≤5 in 90.8% of cases.en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (ARO W911NF-16-2-0023)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (1122374)en_US
dc.language.isoen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/acscentsci.7b00064en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceACSen_US
dc.titlePrediction of Organic Reaction Outcomes Using Machine Learningen_US
dc.typeArticleen_US
dc.identifier.citationColey, Connor W.; Barzilay, Regina; Jaakkola, Tommi S. et al. “Prediction of Organic Reaction Outcomes Using Machine Learning.” ACS Central Science 3, 5 (April 2017): 434–443 © 2017 American Chemical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorColey, Connor Wilson
dc.contributor.mitauthorBarzilay, Regina
dc.contributor.mitauthorJaakkola, Tommi S.
dc.contributor.mitauthorGreen, William H.
dc.contributor.mitauthorJensen, Klavs F.
dc.relation.journalACS Central Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsColey, Connor W.; Barzilay, Regina; Jaakkola, Tommi S.; Green, William H.; Jensen, Klavs F.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8271-8723
dc.identifier.orcidhttps://orcid.org/0000-0002-2921-8201
dc.identifier.orcidhttps://orcid.org/0000-0002-2199-0379
dc.identifier.orcidhttps://orcid.org/0000-0001-7192-580X
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record