Show simple item record

dc.contributor.authorGuérin, Bastien
dc.contributor.authorKeil, Boris
dc.contributor.authorVester, Markus
dc.contributor.authorWald, Lawrence L.
dc.contributor.authorMahmood, Zohaib
dc.contributor.authorMcDaniel, Patrick C.
dc.contributor.authorAdalsteinsson, Elfar
dc.contributor.authorDaniel, Luca
dc.date.accessioned2017-07-14T19:33:24Z
dc.date.available2017-07-14T19:33:24Z
dc.date.issued2016-06
dc.date.submitted2015-06
dc.identifier.issn0740-3194
dc.identifier.issn1522-2594
dc.identifier.urihttp://hdl.handle.net/1721.1/110712
dc.description.abstractPurpose In a coupled parallel transmit (pTx) array, the power delivered to a channel is partially distributed to other channels because of coupling. This power is dissipated in circulators resulting in a significant reduction in power efficiency. In this study, a technique for designing robust decoupling matrices interfaced between the RF amplifiers and the coils is proposed. The decoupling matrices ensure that most forward power is delivered to the load without loss of encoding capabilities of the pTx array. Theory and Methods The decoupling condition requires that the impedance matrix seen by the power amplifiers is a diagonal matrix whose entries match the characteristic impedance of the power amplifiers. In this work, the impedance matrix of the coupled coils is diagonalized by a successive multiplication by its eigenvectors. A general design procedure and software are developed to generate automatically the hardware that implements diagonalization using passive components. Results The general design method is demonstrated by decoupling two example parallel transmit arrays. Our decoupling matrices achieve better than −20 db decoupling in both cases. Conclusion A robust framework for designing decoupling matrices for pTx arrays is presented and validated. The proposed decoupling strategy theoretically scales to any arbitrary number of channels.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (1227020-EEC)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R01EB0006847)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R01EB007942)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (P41EB015896)en_US
dc.language.isoen_US
dc.publisherWiley Blackwellen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/mrm.25855en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleGeneral design approach and practical realization of decoupling matrices for parallel transmission coilsen_US
dc.typeArticleen_US
dc.identifier.citationMahmood, Zohaib; McDaniel, Patrick; Guérin, Bastien et al. “General Design Approach and Practical Realization of Decoupling Matrices for Parallel Transmission Coils.” Magnetic Resonance in Medicine 76, 1 (July 2015): 329–339 © 2015 Wiley Periodicals, Incen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorMahmood, Zohaib
dc.contributor.mitauthorMcDaniel, Patrick C.
dc.contributor.mitauthorAdalsteinsson, Elfar
dc.contributor.mitauthorDaniel, Luca
dc.relation.journalMagnetic Resonance in Medicineen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMahmood, Zohaib; McDaniel, Patrick; Guérin, Bastien; Keil, Boris; Vester, Markus; Adalsteinsson, Elfar; Wald, Lawrence L.; Daniel, Lucaen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7637-2914
dc.identifier.orcidhttps://orcid.org/0000-0002-5880-3151
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record