Show simple item record

dc.contributor.authorTorrado-Carvajal, Angel
dc.contributor.authorHerraiz, Joaquin L.
dc.contributor.authorHernandez-Tamames, Juan A.
dc.contributor.authorSan Jose-Estepar, Raul
dc.contributor.authorEryaman, Yigitcan
dc.contributor.authorRozenholc, Yves
dc.contributor.authorAdalsteinsson, Elfar
dc.contributor.authorWald, Lawrence L.
dc.contributor.authorMalpica, Norberto
dc.date.accessioned2017-07-14T19:40:20Z
dc.date.available2017-07-14T19:40:20Z
dc.date.issued2016-03
dc.date.submitted2015-03
dc.identifier.issn0740-3194
dc.identifier.issn1522-2594
dc.identifier.urihttp://hdl.handle.net/1721.1/110713
dc.description.abstractPurpose MRI-based skull segmentation is a useful procedure for many imaging applications. This study describes a methodology for automatic segmentation of the complete skull from a single T1-weighted volume. Methods The skull is estimated using a multi-atlas segmentation approach. Using a whole head computed tomography (CT) scan database, the skull in a new MRI volume is detected by nonrigid image registration of the volume to every CT, and combination of the individual segmentations by label-fusion. We have compared Majority Voting, Simultaneous Truth and Performance Level Estimation (STAPLE), Shape Based Averaging (SBA), and the Selective and Iterative Method for Performance Level Estimation (SIMPLE) algorithms. Results The pipeline has been evaluated quantitatively using images from the Retrospective Image Registration Evaluation database (reaching an overlap of 72.46 ± 6.99%), a clinical CT-MR dataset (maximum overlap of 78.31 ± 6.97%), and a whole head CT-MRI pair (maximum overlap 78.68%). A qualitative evaluation has also been performed on MRI acquisition of volunteers. Conclusion It is possible to automatically segment the complete skull from MRI data using a multi-atlas and label fusion approach. This will allow the creation of complete MRI-based tissue models that can be used in electromagnetic dosimetry applications and attenuation correction in PET/MR.en_US
dc.language.isoen_US
dc.publisherWiley Blackwellen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/mrm.25737en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther repositoryen_US
dc.titleMulti-atlas and label fusion approach for patient-specific MRI based skull estimationen_US
dc.typeArticleen_US
dc.identifier.citationTorrado-Carvajal, Angel; Herraiz, Joaquin L.; Hernandez-Tamames, Juan A. et al. “Multi-Atlas and Label Fusion Approach for Patient-Specific MRI Based Skull Estimation.” Magnetic Resonance in Medicine 75, 4 (May 2015): 1797–1807 © 2015 Wiley Periodicals, Incen_US
dc.contributor.departmentInstitute for Medical Engineering and Scienceen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorAdalsteinsson, Elfar
dc.relation.journalMagnetic Resonance in Medicineen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsTorrado-Carvajal, Angel; Herraiz, Joaquin L.; Hernandez-Tamames, Juan A.; San Jose-Estepar, Raul; Eryaman, Yigitcan; Rozenholc, Yves; Adalsteinsson, Elfar; Wald, Lawrence L.; Malpica, Norbertoen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7637-2914
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record