Mode Selection in Compressible Active Flow Networks
Author(s)
Woodhouse, Francis G.; Forrow, Aden; Dunkel, Joern
DownloadPhysRevLett.119.028102.pdf (840.5Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Coherent, large-scale dynamics in many nonequilibrium physical, biological, or information transport networks are driven by small-scale local energy input. Here, we introduce and explore an analytically tractable nonlinear model for compressible active flow networks. In contrast to thermally driven systems, we find that active friction selects discrete states with a limited number of oscillation modes activated at distinct fixed amplitudes. Using perturbation theory, we systematically predict the stationary states of noisy networks and find good agreement with a Bayesian state estimation based on a hidden Markov model applied to simulated time series data. Our results suggest that the macroscopic response of active network structures, from actomyosin force networks to cytoplasmic flows, can be dominated by a significantly reduced number of modes, in contrast to energy equipartition in thermal equilibrium. The model is also well suited to study topological sound modes and spectral band gaps in active matter.
Date issued
2017-07Department
Massachusetts Institute of Technology. Department of MathematicsJournal
Physical Review Letters
Publisher
American Physical Society
Citation
Forrow, Aden; Woodhouse, Francis G. and Dunkel, Jörn. "Mode Selection in Compressible Active Flow Networks." Physical Review Letters 119, 2 (July 2017): 028102 © 2017 American Physical Society
Version: Final published version
ISSN
0031-9007
1079-7114