Show simple item record

dc.contributor.authorCauley, Stephen F.
dc.contributor.authorSetsompop, Kawin
dc.contributor.authorMa, Dan
dc.contributor.authorJiang, Yun
dc.contributor.authorYe, Huihui
dc.contributor.authorGriswold, Mark A.
dc.contributor.authorAdalsteinsson, Elfar
dc.contributor.authorWald, Lawrence
dc.date.accessioned2017-07-17T17:51:59Z
dc.date.available2017-07-17T17:51:59Z
dc.date.issued2015-07
dc.date.submitted2014-07
dc.identifier.issn0740-3194
dc.identifier.issn1522-2594
dc.identifier.urihttp://hdl.handle.net/1721.1/110735
dc.description.abstractPurpose MR fingerprinting (MRF) is a technique for quantitative tissue mapping using pseudorandom measurements. To estimate tissue properties such as T1, T2, proton density, and B0, the rapidly acquired data are compared against a large dictionary of Bloch simulations. This matching process can be a very computationally demanding portion of MRF reconstruction. Theory and Methods We introduce a fast group matching algorithm (GRM) that exploits inherent correlation within MRF dictionaries to create highly clustered groupings of the elements. During matching, a group specific signature is first used to remove poor matching possibilities. Group principal component analysis (PCA) is used to evaluate all remaining tissue types. In vivo 3 Tesla brain data were used to validate the accuracy of our approach. Results For a trueFISP sequence with over 196,000 dictionary elements, 1000 MRF samples, and image matrix of 128 × 128, GRM was able to map MR parameters within 2s using standard vendor computational resources. This is an order of magnitude faster than global PCA and nearly two orders of magnitude faster than direct matching, with comparable accuracy (1–2% relative error). Conclusion The proposed GRM method is a highly efficient model reduction technique for MRF matching and should enable clinically relevant reconstruction accuracy and time on standard vendor computational resources.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R01EB006847)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R00EB012107)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R01EB017219)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (U01MH093765)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (P41RR014075)en_US
dc.language.isoen_US
dc.publisherWiley Blackwellen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/mrm.25439en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleFast group matching for MR fingerprinting reconstructionen_US
dc.typeArticleen_US
dc.identifier.citationCauley, Stephen F.; Setsompop, Kawin; Ma, Dan et al. “Fast Group Matching for MR Fingerprinting Reconstruction.” Magnetic Resonance in Medicine 74, 2 (August 2014): 523–528 © 2014 Wiley Periodicals, Incen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Scienceen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorAdalsteinsson, Elfar
dc.contributor.mitauthorWald, Lawrence
dc.relation.journalMagnetic Resonance in Medicineen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCauley, Stephen F.; Setsompop, Kawin; Ma, Dan; Jiang, Yun; Ye, Huihui; Adalsteinsson, Elfar; Griswold, Mark A.; Wald, Lawrence L.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7637-2914
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record