Show simple item record

dc.contributor.authorSantavicca, Daniel F.
dc.contributor.authorAdams, Jesse K.
dc.contributor.authorGrant, Lierd E.
dc.contributor.authorMcCaughan, Adam N
dc.contributor.authorBerggren, Karl K
dc.date.accessioned2017-07-18T13:57:34Z
dc.date.available2017-07-18T13:57:34Z
dc.date.issued2016-06
dc.date.submitted2016-06
dc.identifier.issn0021-8979
dc.identifier.issn1089-7550
dc.identifier.urihttp://hdl.handle.net/1721.1/110748
dc.description.abstractWe study the microwave impedance of extremely high aspect ratio (length/width ≈ 5000) superconducting niobium nitride nanowires. The nanowires are fabricated in a compact meander geometry that is in series with the center conductor of a 50 Ω coplanar waveguide transmission line. The transmission coefficient of the sample is measured up to 20 GHz. At high frequency, a peak in the transmission coefficient is seen. Numerical simulations show that this is a half-wave resonance along the length of the nanowire, where the nanowire acts as a high impedance, slow wave transmission line. This resonance sets the upper frequency limit for these nanowires as inductive elements. Fitting simulations to the measured resonance enables a precise determination of the nanowire's complex sheet impedance at the resonance frequency. The real part is a measure of dissipation, while the imaginary part is dominated by kinetic inductance. We characterize the dependence of the sheet resistance and sheet inductance on both temperature and current and compare the results to recent theoretical predictions for disordered superconductors. These results can aid in the understanding of high frequency devices based on superconducting nanowires. They may also lead to the development of novel superconducting devices such as ultra-compact resonators and slow-wave structures.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant CCS‐1509253 (UNF))en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant ECCS‐1509486 (MIT))en_US
dc.description.sponsorshipResearch Corporation for Science Advancement (Cottrell College Science Award)en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Physics (AIP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4954068en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleMicrowave dynamics of high aspect ratio superconducting nanowires studied using self-resonanceen_US
dc.typeArticleen_US
dc.identifier.citationSantavicca, Daniel F., Jesse K. Adams, Lierd E. Grant, Adam N. McCaughan, and Karl K. Berggren. “Microwave Dynamics of High Aspect Ratio Superconducting Nanowires Studied Using Self-Resonance.” Journal of Applied Physics 119, no. 23 (June 21, 2016): 234302.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorMcCaughan, Adam N
dc.contributor.mitauthorBerggren, Karl K
dc.relation.journalJournal of Applied Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSantavicca, Daniel F.; Adams, Jesse K.; Grant, Lierd E.; McCaughan, Adam N.; Berggren, Karl K.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8553-6474
dc.identifier.orcidhttps://orcid.org/0000-0001-7453-9031
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record