Show simple item record

dc.contributor.authorLei, Tao
dc.contributor.authorBarzilay, Regina
dc.contributor.authorJaakkola, Tommi S.
dc.date.accessioned2017-07-18T14:54:24Z
dc.date.available2017-07-18T14:54:24Z
dc.date.issued2015-09
dc.identifier.urihttp://hdl.handle.net/1721.1/110753
dc.description.abstractThe success of deep learning often derives from well-chosen operational building blocks. In this work, we revise the temporal convolution operation in CNNs to better adapt it to text processing. Instead of concatenating word representations, we appeal to tensor algebra and use low-rank n-gram tensors to directly exploit interactions between words already at the convolution stage. Moreover, we extend the n-gram convolution to non-consecutive words to recognize patterns with intervening words. Through a combination of low-rank tensors, and pattern weighting, we can efficiently evaluate the resulting convolution operation via dynamic programming. We test the resulting architecture on standard sentiment classification and news categorization tasks.Our model achieves state-of-the-art performance both in terms of accuracy and training speed. For instance, we obtain 51.2% accuracy on the fine-grained sentiment classification task.en_US
dc.description.sponsorshipUnited States. Army Research Office (grant number W911NF-10-1-0533)en_US
dc.language.isoen_US
dc.publisherAssociation for Computational Linguisticsen_US
dc.relation.isversionofhttp://www.emnlp2015.org/proceedings/EMNLP/en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleMolding CNNs for text: Non-linear, non-consecutive convolutionsen_US
dc.typeArticleen_US
dc.identifier.citationLei, Tao, Regina Barzilay, and Tommi Jaakkola. "Molding CNNs for text: Non-linear, non-consecutive convolutions." Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1565–1575, Lisbon, Portugal, 17-21 September 2015., pp.1565-1575.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorLei, Tao
dc.contributor.mitauthorBarzilay, Regina
dc.contributor.mitauthorJaakkola, Tommi S.
dc.relation.journalProceedings of the 2015 Conference on Empirical Methods in Natural Language Processingen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsLei, Tao ; Barzilary, Regina ; Jaakkola, Tommien_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4644-3088
dc.identifier.orcidhttps://orcid.org/0000-0002-2921-8201
dc.identifier.orcidhttps://orcid.org/0000-0002-2199-0379
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record