Show simple item record

dc.contributor.authorBarzilay, Regina
dc.contributor.authorZhang, Yuan
dc.date.accessioned2017-07-18T14:59:38Z
dc.date.available2017-07-18T14:59:38Z
dc.date.issued2015-09
dc.identifier.urihttp://hdl.handle.net/1721.1/110754
dc.description.abstractAccurate multilingual transfer parsing typically relies on careful feature engineering. In this paper, we propose a hierarchical tensor-based approach for this task. This approach induces a compact feature representation by combining atomic features. However, unlike traditional tensor models, it enables us to incorporate prior knowledge about desired feature interactions, eliminating invalid feature combinations. To this end, we use a hierarchical structure that uses intermediate embeddings to capture desired feature combinations. Algebraically, this hierarchical tensor is equivalent to the sum of traditional tensors with shared components, and thus can be effectively trained with standard online algorithms. In both unsupervised and semi-supervised transfer scenarios, our hierarchical tensor consistently improves UAS and LAS over state-of-the-art multilingual transfer parsers and the traditional tensor model across 10 different languages.en_US
dc.description.sponsorshipUnited States. Army Research Office (Grant W911NF-10-1-0533)en_US
dc.language.isoen_US
dc.publisherAssociation for Computational Linguisticsen_US
dc.relation.isversionofhttp://www.emnlp2015.org/proceedings/EMNLP/en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleHierarchical Low-Rank Tensors for Multilingual Transfer Parsingen_US
dc.typeArticleen_US
dc.identifier.citationZhang, Yuan and Regina Barzilay. "Hierarchical Low-Rank Tensors for Multilingual Transfer Parsing." 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17-21 September, 2015. Association for Computational Linguistics, 2015, pp. 1857–1867.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorBarzilay, Regina
dc.contributor.mitauthorZhang, Yuan
dc.relation.journalProceedings of the 2015 Conference on Empirical Methods in Natural Language Processingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsZhang, Yuan; Barzilay, Reginaen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2921-8201
dc.identifier.orcidhttps://orcid.org/0000-0003-3121-0185
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record