Show simple item record

dc.contributor.authorGe, Rong
dc.contributor.authorKakade, Sham
dc.contributor.authorHuang, Qingqing
dc.contributor.authorDahleh, Munther A
dc.date.accessioned2017-07-20T20:41:09Z
dc.date.available2017-07-20T20:41:09Z
dc.date.issued2015-12
dc.identifier.issn1053-587X
dc.identifier.issn1941-0476
dc.identifier.urihttp://hdl.handle.net/1721.1/110794
dc.description.abstractThis paper addresses two fundamental problems in the context of hidden Markov models (HMMs). The first problem is concerned with the characterization and computation of a minimal order HMM that realizes the exact joint densities of an output process based on only finite strings of such densities (known as HMM partial realization problem). The second problem is concerned with learning a HMM from finite output observations of a stochastic process. We review and connect two fields of studies: realization theory of HMMs, and the recent development in spectral methods for learning latent variable models. Our main results in this paper focus on generic situations, namely, statements that will be true for almost all HMMs, excluding a measure zero set in the parameter space. In the main theorem, we show that both the minimal quasi-HMM realization and the minimal HMM realization can be efficiently computed based on the joint probabilities of length N strings, for N in the order of O(logd(k)). In other words, learning a quasi-HMM and an HMM have comparable complexity for almost all HMMs.en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/tsp.2015.2510969en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleMinimal Realization Problems for Hidden Markov Modelsen_US
dc.typeArticleen_US
dc.identifier.citationHuang, Qingqing, Rong Ge, Sham Kakade, and Munther Dahleh. “Minimal Realization Problems for Hidden Markov Models.” IEEE Transactions on Signal Processing 64, no. 7 (April 2016): 1896–1904.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.mitauthorHuang, Qingqing
dc.contributor.mitauthorDahleh, Munther A
dc.relation.journalIEEE Transactions on Signal Processingen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsHuang, Qingqing; Ge, Rong; Kakade, Sham; Dahleh, Muntheren_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9113-7269
dc.identifier.orcidhttps://orcid.org/0000-0002-1470-2148
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record