MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Irreversible Thermodynamic Bound for the Efficiency of Light-Emitting Diodes

Author(s)
Xue, Jin; Li, Zheng; Ram, Rajeev J
Thumbnail
DownloadPhysRevApplied.8.014017.pdf (484.7Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
A thermodynamic model for light-emitting diodes (LEDs) is developed by considering energy and entropy flows in the system. Thermodynamic constraints have previously been considered separately for the reversible process of electroluminescence in LEDs and for light extraction and collimation in other optical systems. By considering both processes in the LED model, an irreversible upper bound for the conversion of electrical energy to optical energy is derived and shown to be higher than unity, but tighter and more realistic than the reversible case. We also model a LED as an endoreversible heat engine where the carrier-transport processes can be directly connected to the elements of a thermodynamic cycle.
Date issued
2017-07
URI
http://hdl.handle.net/1721.1/110819
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Physical Review Applied
Publisher
American Physical Society
Citation
Xue, Jin; Li, Zheng and Ram, Rajeev J. "Irreversible Thermodynamic Bound for the Efficiency of Light-Emitting Diodes." Physical Review Applied 8, 1 (July 2017): 014017 © 2017 American Physical Society
Version: Final published version
ISSN
2331-7019

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.