MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Topological Control on the Structural Relaxation of Atomic Networks under Stress

Author(s)
Bauchy, Mathieu; Wang, Mengyi; Yu, Yingtian; Wang, Bu; Krishnan, N. M. Anoop; Masoero, Enrico; Ulm, Franz-Josef; Pellenq, Roland Jm; ... Show more Show less
Thumbnail
DownloadPhysRevLett.119.035502.pdf (444.2Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Upon loading, atomic networks can feature delayed irreversible relaxation. However, the effect of composition and structure on relaxation remains poorly understood. Herein, relying on accelerated molecular dynamics simulations and topological constraint theory, we investigate the relationship between atomic topology and stress-induced structural relaxation, by taking the example of creep deformations in calcium silicate hydrates (C─S─H), the binding phase of concrete. Under constant shear stress, C─S─H is found to feature delayed logarithmic shear deformations. We demonstrate that the propensity for relaxation is minimum for isostatic atomic networks, which are characterized by the simultaneous absence of floppy internal modes of relaxation and eigenstress. This suggests that topological nanoengineering could lead to the discovery of nonaging materials.
Date issued
2017-07
URI
http://hdl.handle.net/1721.1/110821
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; MultiScale Materials Science for Energy and Environment, Joint MIT-CNRS Laboratory
Journal
Physical Review Letters
Publisher
American Physical Society
Citation
Bauchy, Mathieu et al. “Topological Control on the Structural Relaxation of Atomic Networks under Stress.” Physical Review Letters 119.3 (2017): n. pag.
Version: Final published version
ISSN
0031-9007
1079-7114

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.