MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A size-free CLT for poisson multinomials and its applications

Author(s)
De, Anindya; Kamath, Gautam; Daskalakis, Konstantinos; Kamath, Gautam Chetan; Tzamos, Christos
Thumbnail
DownloadA size-free CLT.pdf (599.8Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
An (n,k)-Poisson Multinomial Distribution (PMD) is the distribution of the sum of n independent random vectors supported on the set Bk={e1,…,ek} of standard basis vectors in ℝk. We show that any (n,k)-PMD is poly(k/σ)-close in total variation distance to the (appropriately discretized) multi-dimensional Gaussian with the same first two moments, removing the dependence on n from the Central Limit Theorem of Valiant and Valiant. Interestingly, our CLT is obtained by bootstrapping the Valiant-Valiant CLT itself through the structural characterization of PMDs shown in recent work by Daskalakis, Kamath and Tzamos. In turn, our stronger CLT can be leveraged to obtain an efficient PTAS for approximate Nash equilibria in anonymous games, significantly improving the state of the art, and matching qualitatively the running time dependence on n and 1/є of the best known algorithm for two-strategy anonymous games. Our new CLT also enables the construction of covers for the set of (n,k)-PMDs, which are proper and whose size is shown to be essentially optimal. Our cover construction combines our CLT with the Shapley-Folkman theorem and recent sparsification results for Laplacian matrices by Batson, Spielman, and Srivastava. Our cover size lower bound is based on an algebraic geometric construction. Finally, leveraging the structural properties of the Fourier spectrum of PMDs we show that these distributions can be learned from Ok(1/є2) samples in polyk(1/є)-time, removing the quasi-polynomial dependence of the running time on 1/є from prior work.
Date issued
2016-06
URI
http://hdl.handle.net/1721.1/110835
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing - STOC 2016
Publisher
Association for Computing Machinery
Citation
Daskalakis, Constantinos, Anindya De, Gautam Kamath, and Christos Tzamos. “A Size-Free CLT for Poisson Multinomials and Its Applications.” Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing - STOC 2016 (2016).
Version: Original manuscript
ISBN
9781450341325

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.