Show simple item record

dc.contributor.authorAdler, Aviv
dc.contributor.authorDaskalakis, Konstantinos
dc.contributor.authorDemaine, Erik D
dc.date.accessioned2017-07-25T18:31:42Z
dc.date.available2017-07-25T18:31:42Z
dc.date.issued2016-07
dc.identifier.isbn978-3-95977-013-2
dc.identifier.issn1868-8969
dc.identifier.otherTrack A: Algorithms, Complexity and Games
dc.identifier.otherArticle no.24
dc.identifier.urihttp://hdl.handle.net/1721.1/110842
dc.description.abstractThe Jordan curve theorem and Brouwer's fixed-point theorem are fundamental problems in topology. We study their computational relationship, showing that a stylized computational version of Jordan’s theorem is PPAD-complete, and therefore in a sense computationally equivalent to Brouwer’s theorem. As a corollary, our computational result implies that these two theorems directly imply each other mathematically, complementing Maehara's proof that Brouwer implies Jordan [Maehara, 1984]. We then turn to the combinatorial game of Hex which is related to Jordan's theorem, and where the existence of a winner can be used to show Brouwer's theorem [Gale,1979]. We establish that determining who won an (implicitly encoded) play of Hex is PSPACE-complete by adapting a reduction (due to Goldberg [Goldberg,2015]) from Quantified Boolean Formula (QBF). As this problem is analogous to evaluating the output of a canonical path-following algorithm for finding a Brouwer fixed point - and which is known to be PSPACE-complete [Goldberg/Papadimitriou/Savani, 2013] - we thereby establish a connection between Brouwer, Jordan and Hex higher in the complexity hierarchy.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant CCF-1551875)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (ONR grant N00014-12-1-0999)en_US
dc.language.isoen_US
dc.publisherSchloss Dagstuhl, Leibniz-Zentrum für Informatik GmbHen_US
dc.relation.isversionofhttp://dx.doi.org/10.4230/LIPIcs.ICALP.2016.24en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceDagstuhl Publishingen_US
dc.titleThe Complexity of Hex and the Jordan Curve Theoremen_US
dc.typeArticleen_US
dc.identifier.citationAdler, Aviv, Constantinos Daskalakis, and Erik Demaine. "The Complexity of Hex and the Jordan Curve Theorem" In 43rd International Colloquium on Automata, Languages, and Programming: ICALP 2016, Rome, Italy, July 12-15, 2016. Article no. 24; pp. 24:1-24:14.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorAdler, Aviv
dc.contributor.mitauthorDaskalakis, Konstantinos
dc.contributor.mitauthorDemaine, Erik D
dc.relation.journal43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsAdler, Aviv; Daskalakis, Constantinos; Demaine, Eriken_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3698-7639
dc.identifier.orcidhttps://orcid.org/0000-0002-5451-0490
dc.identifier.orcidhttps://orcid.org/0000-0003-3803-5703
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record