Show simple item record

dc.contributor.authorDemaine, Erik D
dc.contributor.authorLynch, Jayson R.
dc.contributor.authorMirano, Geronimo J.
dc.contributor.authorTyagi, Nirvan
dc.date.accessioned2017-07-26T16:19:23Z
dc.date.available2017-07-26T16:19:23Z
dc.date.issued2016-01
dc.identifier.isbn9781450340571
dc.identifier.urihttp://hdl.handle.net/1721.1/110856
dc.description.abstractWe initiate the systematic study of the energy complexity of algorithms (in addition to time and space complexity) based on Landauer's Principle in physics, which gives a lower bound on the amount of energy a system must dissipate if it destroys information. We propose energy-aware variations of three standard models of computation: circuit RAM, word RAM, and transdichotomous RAM. On top of these models, we build familiar high-level primitives such as control logic, memory allocation, and garbage collection with zero energy complexity and only constant-factor overheads in space and time complexity, enabling simple expression of energy-efficient algorithms. We analyze several classic algorithms in our models and develop low-energy variations: comparison sort, insertion sort, counting sort, breadth-first search, Bellman-Ford, Floyd-Warshall, matrix all-pairs shortest paths, AVL trees, binary heaps, and dynamic arrays. We explore the time/space/energy trade-off and develop several general techniques for analyzing algorithms and reducing their energy complexity. These results lay a theoretical foundation for a new field of semi-reversible computing and provide a new framework for the investigation of algorithms.en_US
dc.description.sponsorshipMIT Energy Initiativeen_US
dc.description.sponsorshipCenter for Massive Data Algorithmics (MADALGO)en_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1145/2840728.2840756en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleEnergy-Efficient Algorithmsen_US
dc.typeArticleen_US
dc.identifier.citationDemaine, Erik D., Jayson Lynch, Geronimo J. Mirano, and Nirvan Tyagi. “Energy-Efficient Algorithms.” Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science - ITCS ’16 (2016), Cambridge, Massachusetts, USA, January 14-17, 2016, pp. 321-332.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.mitauthorDemaine, Erik D
dc.contributor.mitauthorLynch, Jayson R.
dc.contributor.mitauthorMirano, Geronimo J.
dc.contributor.mitauthorTyagi, Nirvan
dc.relation.journalProceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science (ITCS '16)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsDemaine, Erik D.; Lynch, Jayson; Mirano, Geronimo J.; Tyagi, Nirvanen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3803-5703
dc.identifier.orcidhttps://orcid.org/0000-0002-0489-0800
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record