dc.contributor.author | Chen, Long | |
dc.contributor.author | Doerr, Chris | |
dc.contributor.author | Nielson, Torben | |
dc.contributor.author | Jayaraman, Vijaysekhar | |
dc.contributor.author | Cable, Alex E. | |
dc.contributor.author | Wang, Zhao | |
dc.contributor.author | Potsaid, Benjamin M. | |
dc.contributor.author | Lee, Hsiang-Chieh | |
dc.contributor.author | Swanson, Eric A | |
dc.contributor.author | Fujimoto, James G | |
dc.date.accessioned | 2017-08-02T14:42:47Z | |
dc.date.available | 2017-08-02T14:42:47Z | |
dc.date.issued | 2016-12 | |
dc.date.submitted | 2016-10 | |
dc.identifier.issn | 2334-2536 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/110905 | |
dc.description.abstract | Optical coherence tomography (OCT) is a powerful three-dimensional (3D) imaging modality with micrometer-scale axial resolution and up to multi-GigaVoxel/s imaging speed. However, the imaging range of high-speed OCT has been limited. Here, we report 3D OCT over cubic meter
volumes using a long coherence length, 1310 nm vertical-cavity surface-emitting laser and silicon photonic integrated circuit dual-quadrature receiver technology combined with enhanced signal processing. We achieved 15 μm depth resolution for tomographic imaging at a 100 kHz axial scan rate over a 1.5 m range. We show 3D macroscopic imaging examples of a human mannequin, bicycle, machine shop gauge blocks, and a human skull/brain model. High-bandwidth, meter-range OCT demonstrates new capabilities that promise to enable a wide range of biomedical, scientific, industrial, and research applications. | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (R01- EY011289-30) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (R01-CA075289-19) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (RO1-CA178636-02) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (R44- EY022864-03) | en_US |
dc.description.sponsorship | United States. Air Force Office of Scientific Research (FA9550-12-1-0551) | en_US |
dc.description.sponsorship | United States. Air Force Office of Scientific Research (FA9550-15-1-0473) | en_US |
dc.language.iso | en_US | |
dc.publisher | Optical Society of America | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1364/OPTICA.3.001496 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | PMC | en_US |
dc.title | Cubic meter volume optical coherence tomography | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Wang, Zhao; Potsaid, Benjamin; Chen, Long et al. “Cubic Meter Volume Optical Coherence Tomography.” Optica 3, 12 (December 2016): 1496-1503 © 2016 Optical Society of America | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Research Laboratory of Electronics | en_US |
dc.contributor.mitauthor | Wang, Zhao | |
dc.contributor.mitauthor | Potsaid, Benjamin M. | |
dc.contributor.mitauthor | Lee, Hsiang-Chieh | |
dc.contributor.mitauthor | Swanson, Eric A | |
dc.contributor.mitauthor | Fujimoto, James G | |
dc.relation.journal | Optica | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Wang, Zhao; Potsaid, Benjamin; Chen, Long; Doerr, Chris; Lee, Hsiang-Chieh; Nielson, Torben; Jayaraman, Vijaysekhar; Cable, Alex E.; Swanson, Eric; Fujimoto, James G. | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-9724-5164 | |
dc.identifier.orcid | https://orcid.org/0000-0002-2976-6195 | |
dc.identifier.orcid | https://orcid.org/0000-0002-0828-4357 | |
mit.license | OPEN_ACCESS_POLICY | en_US |