Show simple item record

dc.contributor.authorToews, M.
dc.contributor.authorWachinger, Christian
dc.contributor.authorLangs, Georg
dc.contributor.authorWells, William M
dc.contributor.authorGolland, Polina
dc.date.accessioned2017-08-02T16:05:49Z
dc.date.available2017-08-02T16:05:49Z
dc.date.created2015-06
dc.date.issued2017-08-02
dc.date.submitted2015-06
dc.identifier.isbn978-3-319-19991-7
dc.identifier.isbn978-3-319-19992-4
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/110912
dc.description.abstractWe present an image segmentation method that transfers label maps of entire organs from the training images to the novel image to be segmented. The transfer is based on sparse correspondences between keypoints that represent automatically identified distinctive image locations. Our segmentation algorithm consists of three steps: (i) keypoint matching, (ii) voting-based keypoint labeling, and (iii) keypoint-based probabilistic transfer of organ label maps. We introduce generative models for the inference of keypoint labels and for image segmentation, where keypoint matches are treated as a latent random variable and are marginalized out as part of the algorithm. We report segmentation results for abdominal organs in whole-body CT and in contrast-enhanced CT images. The accuracy of our method compares favorably to common multi-atlas segmentation while offering a speed-up of about three orders of magnitude. Furthermore, keypoint transfer requires no training phase or registration to an atlas. The algorithm’s robustness enables the segmentation of scans with highly variable field-of-view.en_US
dc.description.sponsorshipNational Alliance for Medical Image Computing (U.S.) (U54-EB005149)en_US
dc.description.sponsorshipNational Center for Image Guided Therapy (P41-EB015898)en_US
dc.language.isoen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-319-19992-4_18en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleKeypoint Transfer Segmentationen_US
dc.typeArticleen_US
dc.identifier.citationWachinger, C.; Toews, M.; Langs, G.; Wells, W. et al. “Keypoint Transfer Segmentation.” Information Processing in Medical Imaging (2015): 233–245 © Springer International Publishing Switzerland 2015en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.mitauthorWachinger, Christian
dc.contributor.mitauthorLangs, Georg
dc.contributor.mitauthorWells, William M
dc.contributor.mitauthorGolland, Polina
dc.relation.journalInformation Processing in Medical Imagingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsWachinger, C.; Toews, M.; Langs, G.; Wells, W.; Golland, P.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3652-1874
dc.identifier.orcidhttps://orcid.org/0000-0003-2516-731X
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record