Show simple item record

dc.contributor.authorLi, Yiyang
dc.contributor.authorEl Gabaly, Farid
dc.contributor.authorBartelt, Norman C.
dc.contributor.authorSugar, Joshua D.
dc.contributor.authorFenton, Kyle R.
dc.contributor.authorCogswell, Daniel A.
dc.contributor.authorKilcoyne, A. L. David
dc.contributor.authorTyliszczak, Tolek
dc.contributor.authorChueh, William C.
dc.contributor.authorFerguson, Todd Richard
dc.contributor.authorSmith, Raymond Barrett
dc.contributor.authorBazant, Martin Z
dc.date.accessioned2017-08-03T13:59:55Z
dc.date.available2017-08-03T13:59:55Z
dc.date.issued2014-09
dc.date.submitted2014-02
dc.identifier.issn1476-1122
dc.identifier.issn1476-4660
dc.identifier.urihttp://hdl.handle.net/1721.1/110915
dc.description.abstractMany battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode ​lithium iron phosphate (​LiFePO4; ​LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 ​LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in ​LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nmat4084en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceProf. Bazant via Erja Kajosaloen_US
dc.titleCurrent-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodesen_US
dc.typeArticleen_US
dc.identifier.citationLi, Yiyang; El Gabaly, Farid; Ferguson, Todd R. et al. “Current-Induced Transition from Particle-by-Particle to Concurrent Intercalation in Phase-Separating Battery Electrodes.” Nature Materials 13, 12 (September 2014): 1149–1156 © 2014 Macmillan Publishers Limited, part of Springer Natureen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverBazant, Martin Z.en_US
dc.contributor.mitauthorFerguson, Todd Richard
dc.contributor.mitauthorSmith, Raymond Barrett
dc.contributor.mitauthorBazant, Martin Z
dc.relation.journalNature Materialsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLi, Yiyang; El Gabaly, Farid; Ferguson, Todd R.; Smith, Raymond B.; Bartelt, Norman C.; Sugar, Joshua D.; Fenton, Kyle R.; Cogswell, Daniel A.; Kilcoyne, A. L. David; Tyliszczak, Tolek; Bazant, Martin Z.; Chueh, William C.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2421-6781
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record