Effect of Short Chain Branching on the Interlamellar Structure of Semicrystalline Polyethylene
Author(s)
Locker, C. Rebecca; in ’t Veld, Pieter J.; Kumar, Vaibhaw; Rutledge, Gregory C
Downloadma-2016-02458t_ms_revised.pdf (4.379Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
We use molecular simulations with a united atom force field to examine the effect of short chain branching (SCB) on the noncrystalline, interlamellar structure typical of linear low density polyethylene (LLDPE). The model is predicated on a metastable thermodynamic equilibrium within the interlamellar space of the crystal stack and accounts explicitly for the various chain topologies (loops, tails, and bridges) therein. We examine three branched systems containing methyl, ethyl, and butyl side branches and compare our results to high density polyethylene (HDPE), without branches. We also compare results for two united atom force fields, PYS and TraPPE-UA, within the context of these simulations. In contrast to conventional wisdom, our simulations indicate that the thicknesses of the interfacial regions in systems with SCB are smaller than those observed for a linear polyethylene without branches and that branches are uniformly distributed throughout the interlamellar region. We find a prevalence of gauche states along the backbone due to the presence of branches and an abrupt decrease in the orientational order in the region immediately adjacent to the crystallite.
Date issued
2017-01Department
Massachusetts Institute of Technology. Department of Chemical EngineeringJournal
Macromolecules
Publisher
American Chemical Society (ACS)
Citation
Kumar, Vaibhaw, et al. “Effect of Short Chain Branching on the Interlamellar Structure of Semicrystalline Polyethylene.” Macromolecules 50, 3 (February 2017): 1206–1214 © 2017 American Chemical Society
Version: Author's final manuscript
ISSN
0024-9297
1520-5835