Show simple item record

dc.contributor.authorChin, Sang
dc.contributor.authorJaillet, Patrick
dc.contributor.authorMastin, Andrew
dc.date.accessioned2017-08-17T15:20:47Z
dc.date.available2017-08-17T15:20:47Z
dc.date.issued2015-11
dc.identifier.isbn978-3-662-48970-3
dc.identifier.isbn978-3-662-48971-0
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/110966
dc.description.abstractThe minmax regret problem for combinatorial optimization under uncertainty can be viewed as a zero-sum game played between an optimizing player and an adversary, where the optimizing player selects a solution and the adversary selects costs with the intention of maximizing the regret of the player. The conventional minmax regret model considers only deterministic solutions/strategies, and minmax regret versions of most polynomial solvable problems are NP-hard. In this paper, we consider a randomized model where the optimizing player selects a probability distribution (corresponding to a mixed strategy) over solutions and the adversary selects costs with knowledge of the player’s distribution, but not its realization. We show that under this randomized model, the minmax regret version of any polynomial solvable combinatorial problem becomes polynomial solvable. This holds true for both interval and discrete scenario representations of uncertainty. Using the randomized model, we show new proofs of existing approximation algorithms for the deterministic model based on primal-dual approaches. We also determine integrality gaps of minmax regret formulations, giving tight bounds on the limits of performance gains from randomization. Finally, we prove that minmax regret problems are NP-hard under general convex uncertainty.en_US
dc.description.sponsorshipUnited States. National Aeronautics and Space Administration (NNX12H81G)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (1029603)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (N00014-12-1-0033)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (FA9550-12-1-0136)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-662-48971-0_42en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleRandomized Minmax Regret for Combinatorial Optimization Under Uncertaintyen_US
dc.typeArticleen_US
dc.identifier.citationMastin, Andrew et al. “Randomized Minmax Regret for Combinatorial Optimization Under Uncertainty.” Lecture Notes in Computer Science (December 2015): 491–501 © 2015 Springer-Verlagen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Centeren_US
dc.contributor.mitauthorMastin, Dana A.
dc.contributor.mitauthorJaillet, Patrick
dc.relation.journalAlgorithms and Computationen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsMastin, Andrew; Jaillet, Patrick; Chin, Sangen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8585-6566
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record