Show simple item record

dc.contributor.authorWachinger, Christian
dc.contributor.authorGolland, Polina
dc.date.accessioned2017-08-18T17:37:03Z
dc.date.available2017-08-18T17:37:03Z
dc.date.issued2015-07
dc.identifier.isbn978-3-319-19991-7
dc.identifier.isbn978-3-319-19992-4
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/110984
dc.description.abstractHigh computational costs of manifold learning prohibit its application for large datasets. A common strategy to overcome this problem is to perform dimensionality reduction on selected landmarks and to successively embed the entire dataset with the Nyström method. The two main challenges that arise are: (i) the landmarks selected in non-Euclidean geometries must result in a low reconstruction error, (ii) the graph constructed from sparsely sampled landmarks must approximate the manifold well. We propose to sample the landmarks from determinantal distributions on non-Euclidean spaces. Since current determinantal sampling algorithms have the same complexity as those for manifold learning, we present an efficient approximation with linear complexity. Further, we recover the local geometry after the sparsification by assigning each landmark a local covariance matrix, estimated from the original point set. The resulting neighborhood selection based on the Bhattacharyya distance improves the embedding of sparsely sampled manifolds. Our experiments show a significant performance improvement compared to state-of-the-art landmark selection techniques on synthetic and medical data.en_US
dc.description.sponsorshipNational Alliance for Medical Image Computing (U.S.) (U54-EB005149)en_US
dc.description.sponsorshipNeuroimaging Analysis Center (U.S.) (P41-EB015902)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-319-19992-4_54en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleSampling from Determinantal Point Processes for Scalable Manifold Learningen_US
dc.typeArticleen_US
dc.identifier.citationWachinger, Christian, and Golland, Polina. “Sampling from Determinantal Point Processes for Scalable Manifold Learning.” Information Processing in Medical Imaging (2015): 687–698en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.mitauthorWachinger, Christian
dc.contributor.mitauthorGolland, Polina
dc.relation.journalInformation Processing in Medical Imagingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsWachinger, Christian; Golland, Polinaen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3652-1874
dc.identifier.orcidhttps://orcid.org/0000-0003-2516-731X
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record