The coupling effect of gas-phase chemistry and surface reactions on oxygen permeation and fuel conversion in ITM reactors
Author(s)
Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.; Ghoniem, Ahmed F
DownloadJ.Hong et al. Journal of Membrane Science 488 2015 1-12.pdf (1.411Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
The effect of the coupling between heterogeneous catalytic reactions supported by an ion transport membrane (ITM) and gas-phase chemistry on fuel conversion and oxygen permeation in ITM reactors is examined. In ITM reactors, thermochemical reactions take place in the gas-phase and on the membrane surface, both of which interact with oxygen permeation. However, this coupling between gas-phase and surface chemistry has not been examined in detail. In this study, a parametric analysis using numerical simulations is conducted to investigate this coupling and its impact on fuel conversion and oxygen permeation rates. A thermochemical model that incorporates heterogeneous chemistry on the membrane surface and detailed chemical kinetics in the gas-phase is used. Results show that fuel conversion and oxygen permeation are strongly influenced by the simultaneous action of both chemistries. It is shown that the coupling somewhat suppresses the gas-phase kinetics and reduces fuel conversion, both attributed to extensive thermal energy transfer towards the membrane which conducts it to the air side and radiates to the reactor walls. The reaction pathway and products, in the form of syngas and C₂ hydrocarbons, are also affected. In addition, the operating regimes of ITM reactors in which heterogeneous- or/and homogeneous-phase reactions predominantly contribute to fuel conversion and oxygen permeation are elucidated.
Date issued
2015-04Department
Massachusetts Institute of Technology. Department of Mechanical EngineeringJournal
Journal of Membrane Science
Publisher
Elsevier
Citation
Hong, Jongsup et al. “The Coupling Effect of Gas-Phase Chemistry and Surface Reactions on Oxygen Permeation and Fuel Conversion in ITM Reactors.” Journal of Membrane Science 488 (August 2015): 1–12 © 2015 Elsevier B.V.
Version: Author's final manuscript
ISSN
0376-7388