Show simple item record

dc.contributor.authorWachinger, Christian
dc.contributor.authorFritscher, Karl
dc.contributor.authorSharp, Greg
dc.contributor.authorGolland, Polina
dc.date.accessioned2017-08-23T18:51:08Z
dc.date.available2017-08-23T18:51:08Z
dc.date.issued2015-12
dc.date.submitted2015-06
dc.identifier.issn0278-0062
dc.identifier.issn1558-254X
dc.identifier.urihttp://hdl.handle.net/1721.1/111005
dc.description.abstractWe propose new methods for automatic segmentation of images based on an atlas of manually labeled scans and contours in the image. First, we introduce a Bayesian framework for creating initial label maps from manually annotated training images. Within this framework, we model various registration- and patch-based segmentation techniques by changing the deformation field prior. Second, we perform contour-driven regression on the created label maps to refine the segmentation. Image contours and image parcellations give rise to non-stationary kernel functions that model the relationship between image locations. Setting the kernel to the covariance function in a Gaussian process establishes a distribution over label maps supported by image structures. Maximum a posteriori estimation of the distribution over label maps conditioned on the outcome of the atlas-based segmentation yields the refined segmentation. We evaluate the segmentation in two clinical applications: the segmentation of parotid glands in head and neck CT scans and the segmentation of the left atrium in cardiac MR angiography images.en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/TMI.2015.2442753en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleContour-Driven Atlas-Based Segmentationen_US
dc.typeArticleen_US
dc.identifier.citationWachinger, Christian et al. “Contour-Driven Atlas-Based Segmentation.” IEEE Transactions on Medical Imaging 34, 12 (December 2015): 2492–2505 © 2015 Institute of Electrical and Electronics Engineers (IEEE)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorWachinger, Christian
dc.contributor.mitauthorGolland, Polina
dc.relation.journalIEEE Transactions on Medical Imagingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWachinger, Christian; Fritscher, Karl; Sharp, Greg; Golland, Polinaen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3652-1874
dc.identifier.orcidhttps://orcid.org/0000-0003-2516-731X
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record