Show simple item record

dc.contributor.authorDing, Xiaoyun Sean
dc.contributor.authorStewart, Martin P
dc.contributor.authorSharei, Armon Reza
dc.contributor.authorWeaver, James C
dc.contributor.authorLanger, Robert S
dc.contributor.authorJensen, Klavs F
dc.date.accessioned2017-08-28T17:18:50Z
dc.date.available2017-08-28T17:18:50Z
dc.date.issued2017-03
dc.date.submitted2016-05
dc.identifier.issn2157-846X
dc.identifier.urihttp://hdl.handle.net/1721.1/111022
dc.description.abstractNuclear transfection of DNA into mammalian cells is challenging yet critical for many biological and medical studies. Here, by combining cell squeezing and electric-field-driven transport in a device that integrates microfluidic channels with constrictions and microelectrodes, we demonstrate nuclear delivery of plasmid DNA within 1 h after treatment—the most rapid DNA expression in a high-throughput setting (up to millions of cells per minute per device). Passing cells at high speed through microfluidic constrictions smaller than the cell diameter mechanically disrupts the cell membrane, allowing a subsequent electric field to further disrupt the nuclear envelope and drive DNA molecules into the cytoplasm and nucleus. By tracking the localization of the endosomal sorting complex required for transport III protein CHMP4B (charged multivesicular body protein 4B), we show that the integrity of the nuclear envelope is recovered within 15 minutes of treatment. We also provide insight into subcellular delivery by comparing the performance of the disruption-and-field-enhanced method with those of conventional chemical, electroporation and manual-injection systems.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R01GM101420-01A1)en_US
dc.language.isoen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41551-017-0039en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceProf. Langer via Erja Kajosaloen_US
dc.titleHigh-throughput nuclear delivery and rapid expression of DNA via mechanical and electrical cell-membrane disruptionen_US
dc.typeArticleen_US
dc.identifier.citationDing, Xiaoyun, et al. “High-Throughput Nuclear Delivery and Rapid Expression of DNA via Mechanical and Electrical Cell-Membrane Disruption.” Nature Biomedical Engineering 1, 3 (March 2017): 0039 © 2017 Macmillan Publishers Limited, part of Springer Natureen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.approverJensen, Klavs F.en_US
dc.contributor.mitauthorDing, Xiaoyun Sean
dc.contributor.mitauthorStewart, Martin P
dc.contributor.mitauthorSharei, Armon Reza
dc.contributor.mitauthorWeaver, James C
dc.contributor.mitauthorLanger, Robert S
dc.contributor.mitauthorJensen, Klavs F
dc.relation.journalNature Biomedical Engineeringen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsDing, Xiaoyun; Stewart, Martin P.; Sharei, Armon; Weaver, James C.; Langer, Robert S.; Jensen, Klavs F.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4252-9335
dc.identifier.orcidhttps://orcid.org/0000-0003-4112-6622
dc.identifier.orcidhttps://orcid.org/0000-0002-9016-5962
dc.identifier.orcidhttps://orcid.org/0000-0003-4255-0492
dc.identifier.orcidhttps://orcid.org/0000-0001-7192-580X
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record