Show simple item record

dc.contributor.authorJeon, Jinseong
dc.contributor.authorFoster, Jeffrey S.
dc.contributor.authorQiu, Xiaokang
dc.contributor.authorSolar Lezama, Armando
dc.date.accessioned2017-08-28T18:44:36Z
dc.date.available2017-08-28T18:44:36Z
dc.date.issued2017-08-28
dc.identifier.isbn978-3-319-21667-6
dc.identifier.isbn978-3-319-21668-3
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/111033
dc.description.abstractProgram synthesis tools work by searching for an implementation that satisfies a given specification. Two popular search strategies are symbolic search, which reduces synthesis to a formula passed to a SAT solver, and explicit search, which uses brute force or random search to find a solution. In this paper, we propose adaptive concretization, a novel synthesis algorithm that combines the best of symbolic and explicit search. Our algorithm works by partially concretizing a randomly chosen, but likely highly influential, subset of the unknowns to be synthesized. Adaptive concretization uses an online search process to find the optimal size of the concretized subset using a combination of exponential hill climbing and binary search, employing a statistical test to determine when one degree of concretization is sufficiently better than another. Moreover, our algorithm lends itself to a highly parallel implementation, further speeding up search. We implemented adaptive concretization for Sketch and evaluated it on a range of benchmarks. We found adaptive concretization is very effective, outperforming Sketch in many cases, sometimes significantly, and has good parallel scalability.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CCF-1139021)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CCF-1139056)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CCF-1161775)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-319-21668-3_22en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther univ. web domainen_US
dc.titleAdaptive Concretization for Parallel Program Synthesisen_US
dc.typeArticleen_US
dc.identifier.citationJeon, Jinseong, et al. “Adaptive Concretization for Parallel Program Synthesis.” Lecture Notes in Computer Science (2015): 377–394. © 2015 Springer International Publishing Switzerlanden_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorQiu, Xiaokang
dc.contributor.mitauthorSolar Lezama, Armando
dc.relation.journalComputer Aided Verificationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsJeon, Jinseong; Qiu, Xiaokang; Solar-Lezama, Armando; Foster, Jeffrey S.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9476-7349
dc.identifier.orcidhttps://orcid.org/0000-0001-7604-8252
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record