MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fine-Grained Cryptography

Author(s)
Degwekar, Akshay Dhananjai; Vaikuntanathan, Vinod; Vasudevan, Prashant
Thumbnail
DownloadVaikuntanathan_Fine-grained.pdf (539.5Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Fine-grained cryptographic primitives are ones that are secure against adversaries with an a-priori bounded polynomial amount of resources (time, space or parallel-time), where the honest algorithms use less resources than the adversaries they are designed to fool. Such primitives were previously studied in the context of time-bounded adversaries (Merkle, CACM 1978), space-bounded adversaries (Cachin and Maurer, CRYPTO 1997) and parallel-time-bounded adversaries (Håstad, IPL 1987). Our goal is come up with fine-grained primitives (in the setting of parallel-time-bounded adversaries) and to show unconditional security of these constructions when possible, or base security on widely believed separation of worst-case complexity classes. We show: 1. NC¹-cryptography: Under the assumption that Open image in new window, we construct one-way functions, pseudo-random generators (with sub-linear stretch), collision-resistant hash functions and most importantly, public-key encryption schemes, all computable in NC¹ and secure against all NC¹ circuits. Our results rely heavily on the notion of randomized encodings pioneered by Applebaum, Ishai and Kushilevitz, and crucially, make non-black-box use of randomized encodings for logspace classes. 2. AC⁰-cryptography: We construct (unconditionally secure) pseudo-random generators with arbitrary polynomial stretch, weak pseudo-random functions, secret-key encryption and perhaps most interestingly, collision-resistant hash functions, computable in AC⁰ and secure against all AC⁰ circuits. Previously, one-way permutations and pseudo-random generators (with linear stretch) computable in AC⁰ and secure against AC⁰ circuits were known from the works of Håstad and Braverman.
Date issued
2017-08-30
URI
http://hdl.handle.net/1721.1/111069
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Advances in Cryptology – CRYPTO 2016
Publisher
Springer
Citation
Degwekar, Akshay et al. “Fine-Grained Cryptography.” Advances in Cryptology – CRYPTO 2016. Lecture Notes in Computer Science 9816 (2016): 533–562. © 2016 International Association for Cryptologic Research
Version: Author's final manuscript
ISBN
978-3-662-53014-6
978-3-662-53015-3
ISSN
0302-9743
1611-3349

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.