Show simple item record

dc.contributor.authorWong, Siu Lun
dc.contributor.authorChoi, Ching Gee
dc.contributor.authorCheng, Allen
dc.contributor.authorPurcell, Oliver
dc.contributor.authorLu, Timothy K
dc.date.accessioned2017-08-31T19:31:12Z
dc.date.available2017-08-31T19:31:12Z
dc.date.issued2015-08
dc.date.submitted2015-05
dc.identifier.issn1087-0156
dc.identifier.issn1546-1696
dc.identifier.urihttp://hdl.handle.net/1721.1/111090
dc.description.abstractThe systematic functional analysis of combinatorial genetics has been limited by the throughput that can be achieved and the order of complexity that can be studied. To enable massively parallel characterization of genetic combinations in human cells, we developed a technology for rapid, scalable assembly of high-order barcoded combinatorial genetic libraries that can be quantified with high-throughput sequencing. We applied this technology, combinatorial genetics en masse (CombiGEM), to create high-coverage libraries of 1,521 two-wise and 51,770 three-wise barcoded combinations of 39 human microRNA (miRNA) precursors. We identified miRNA combinations that synergistically sensitize drug-resistant cancer cells to chemotherapy and/or inhibit cancer cell proliferation, providing insights into complex miRNA networks. More broadly, our method will enable high-throughput profiling of multifactorial genetic combinations that regulate phenotypes of relevance to biomedicine, biotechnology and basic science.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (DP2 OD008435)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (P50 GM098792)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (N00014-13-1-0424)en_US
dc.description.sponsorshipDefense Threat Reduction Agency (DTRA) (HDTRA1-15-1-0050)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nbt.3326en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePMCen_US
dc.titleMassively parallel high-order combinatorial genetics in human cellsen_US
dc.typeArticleen_US
dc.identifier.citationWong, Alan S L et al. “Massively Parallel High-Order Combinatorial Genetics in Human Cells.” Nature Biotechnology 33, 9 (August 2015): 952–961 © 2015 Nature America, Incen_US
dc.contributor.departmentMassachusetts Institute of Technology. Synthetic Biology Centeren_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorWong, Siu Lun
dc.contributor.mitauthorChoi, Ching Gee
dc.contributor.mitauthorCheng, Allen
dc.contributor.mitauthorPurcell, Oliver
dc.contributor.mitauthorLu, Timothy K
dc.relation.journalNature Biotechnologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWong, Alan S L; Choi, Gigi C G; Cheng, Allen A; Purcell, Oliver; Lu, Timothy Ken_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5744-0873
dc.identifier.orcidhttps://orcid.org/0000-0002-2031-8871
dc.identifier.orcidhttps://orcid.org/0000-0002-9999-6690
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record